Factorizing Perception and Policy for Interactive Instruction Following
Kunal Pratap Singh* ,
Suvaansh Bhambri* ,
Byeonghwi Kim* ,
Roozbeh Mottaghi ,
Jonghyun Choi
ICCV 2021
MOCA (Modular Object-Centric Approach) is a modular architecture that decouples a task into visual perception and action policy.
The action policy module (APM) is responsible for sequential action prediction, whereas the interactive perception module (IPM) generates pixel-wise interaction mask for the objects of interest for manipulation.
MOCA addresses long-horizon instruction following tasks based on egocentric RGB observations and natural language instructions on the ALFRED benchmark.
(Prev: MOCA: A Modular Object-Centric Approach for Interactive Instruction Following)
$ git clone https://github.com/gistvision/moca.git moca
$ export ALFRED_ROOT=$(pwd)/moca
$ virtualenv -p $(which python3) --system-site-packages moca_env
$ source moca_env/bin/activate
$ cd $ALFRED_ROOT
$ pip install --upgrade pip
$ pip install -r requirements.txt
We are currently working on the release of our dataset with the original ResNet features and ones with data augmentation. We will update here when it's available.
We will update the script to provide a pretrained model used for the paper.
To train MOCA, run train_seq2seq.py
with hyper-parameters below.
python models/train/train_seq2seq.py --data <path_to_dataset> --model seq2seq_im_mask --dout <path_to_save_weight> --splits data/splits/oct21.json --gpu --batch <batch_size> --pm_aux_loss_wt <pm_aux_loss_wt_coeff> --subgoal_aux_loss_wt <subgoal_aux_loss_wt_coeff> --preprocess
Note: As mentioned in the repository of ALFRED, run with --preprocess
only once for preprocessed json files.
Note: All hyperparameters used for the experiments in the paper are set as default.
For example, if you want train MOCA and save the weights for all epochs in "exp/moca" with all hyperparameters used in the experiments in the paper, you may use the command below.
python models/train/train_seq2seq.py --dout exp/moca --gpu --save_every_epoch
Note: The option, --save_every_epoch
, saves weights for all epochs and therefore could take a lot of space.
To evaluate MOCA, run eval_seq2seq.py
with hyper-parameters below.
To evaluate a model in the seen
or unseen
environment, pass valid_seen
or valid_unseen
to --eval_split
.
python models/eval/eval_seq2seq.py --data <path_to_dataset> --model models.model.seq2seq_im_mask --model_path <path_to_weight> --eval_split <eval_split> --gpu --num_threads <thread_num>
Note: All hyperparameters used for the experiments in the paper are set as default.
If you want to evaluate our pretrained model saved in exp/pretrained/pretrained.pth
in the seen
validation, you may use the command below.
python models/eval/eval_seq2seq.py --model_path "exp/pretrained/pretrained.pth" --eval_split valid_seen --gpu --num_threads 4
To evaluate MOCA for subgoals, run eval_seq2seq.py
with with the option --subgoals <subgoals>
.
The option takes all
for all subgoals and GotoLocation
, PickupObject
, PutObject
, CoolObject
, HeatObject
, CleanObject
, SliceObject
, and ToggleObject
for each subgoal.
The option can take multiple subgoals.
For more details, refer to ALFRED.
python models/eval/eval_seq2seq.py --data <path_to_dataset> --model models.model.seq2seq_im_mask --model_path <path_to_weight> --eval_split <eval_split> --gpu --num_threads <thread_num> --subgoals <subgoals>
Note: All hyperparameters used for the experiments in the paper are set as default.
If you want to evaluate our pretrained model saved in exp/pretrained/pretrained.pth
in the seen
validation for all subgoals, you may use the command below.
python models/eval/eval_seq2seq.py --model_path "exp/pretrained/pretrained.pth" --eval_split valid_seen --gpu --num_threads 4 --subgoals all
This will be updated soon.
Trained and Tested on:
- GPU - GTX 2080 Ti (11GB)
- CPU - Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz
- RAM - 32GB
- OS - Ubuntu 18.04
MIT License
@article{singh2020moca,
title={Factorizing Perception and Policy for Interactive Instruction Following},
author={Singh, Kunal Pratap and Bhambri, Suvaansh and Kim, Byeonghwi and Mottaghi, Roozbeh and Choi, Jonghyun},
journal={arXiv preprint arXiv:2012.03208},
year={2020}
}