A C++11 library for efficient hierarchical image segmentation.
Please cite the following papers accordingly if you use the code:
-
T. Liu, C. Jones, M. Seyedhosseini, T. Tasdizen. A modular hierarchical approach to 3D electron microscopy image segmentation. Journal of Neuroscience Methods, 226, pp. 88--102, 2014.
-
T. Liu, E. Jurrus, M. Seyedhosseini, T. Tasdizen. Watershed merge tree classification for electron microscopy image segmentation. ICPR 2012.
-
T. Liu, M. Seyedhosseini, T. Tasdizen. Image segmentation using hierarchical merge tree. IEEE Transactions on Image Processing, 25, pp. 4596--4607, 2016.
-
T. Liu, M. Zhang, M. Javanmardi, N. Ramesh, T. Tasdizen. SSHMT: Semi-supervised hierarchical merge tree for electron microscopy image segmentation. ECCV 2016.
Use a modern compiler with C++11 support, e.g., GCC-4.8 or higher and Apple LLVM 6.
Dependencies:
- InsightToolkit (ITK).
- Boost C++ libraries.
- Eigen.
Instructions:
- Use '-DCMAKE_CXX_FLAGS=-std=c++11' for the first time ITK CMake configuration.
- Turn on 'ITKReview' module for ITK.
- Enable C++11 for Boost libraries.
CMake configurations:
- Turn on 'GLIA_MT' to use OpenMP parallelization.
- Work on 3D/2D images with 'GLIA_3D' turned on/off.
- Turn on 'GLIA_BUILD_{HMT,SSHMT,LINK3D,GADGET,ML_RF}' modules accordingly.
- The random forest classifier used in our code is based on Abhishek Jaiantilal's R-to-MATLAB migration (https://github.com/ajaiantilal/randomforest-matlab) of random forest. To use the related functionalities, please turn on 'GLIA_BUILD_ML_RF' and 'GLIA_HMT_USE_RF', and set 'RF_SRC_DIR' as the path to 'RF_Class_C/src/' folder in their code.
- Ting Liu <[email protected]>