The goal of alien-signals
is to create a push-pull push-pull-push model based signal library with the lowest overhead.
We have set the following constraints in scheduling logic:
- No dynamic object fields
- No use of Array/Set/Map
- No recursion calls
- Class properties must be fewer than 10 (https://v8.dev/blog/fast-properties)
Experimental results have shown that with these constraints, it is possible to achieve excellent performance for a Signal library without using sophisticated scheduling strategies. The overall performance of alien-signals
is approximately 400% that of Vue 3.4's reactivity system.
For more detailed performance comparisons, please visit: https://github.com/transitive-bullshit/js-reactivity-benchmark
To achieve high-performance code generation in https://github.com/vuejs/language-tools, I needed to write some on-demand computed logic using Signals, but I couldn't find a low-cost Signal library that satisfied me.
In the past, I accumulated some knowledge of reactivity systems in vuejs/core#5912, so I attempted to develop alien-signals
with the goal of creating a Signal library with minimal memory usage and excellent performance.
Since Vue 3.5 switched to a Pull reactivity system in vuejs/core#10397, I continued to research the Push-Pull reactivity system here. It is worth mentioning that I was inspired by the doubly-linked concept, but alien-signals
does not use a similar implementation.
-
Used in Vue language tools (https://github.com/vuejs/language-tools) for virtual code generation.
-
The core reactivity system code was ported to Vue 3.6 and later. (vuejs/core#12349)
import { signal, computed, effect } from 'alien-signals';
const count = signal(1);
const doubleCount = computed(() => count.get() * 2);
effect(() => {
console.log(`Count is: ${count.get()}`);
}); // Console: Count is: 1
console.log(doubleCount.get()); // 2
count.set(2); // Console: Count is: 2
console.log(doubleCount.get()); // 4
import { signal, effectScope } from 'alien-signals';
const count = signal(1);
const scope = effectScope();
scope.run(() => {
effect(() => {
console.log(`Count in scope: ${count.get()}`);
}); // Console: Count in scope: 1
count.set(2); // Console: Count in scope: 2
});
scope.stop();
count.set(3); // No console output
In order to eliminate recursive calls and improve performance, we record the last link node of the previous loop in propagate
and checkDirty
functions, and implement the rollback logic to return to this node.
This results in code that is difficult to understand, and you don't necessarily get the same performance improvements in other languages, so we record the original implementation without eliminating recursive calls here for reference.
export function propagate(link: Link, targetFlag: SubscriberFlags = SubscriberFlags.Dirty): void {
do {
const sub = link.sub;
const subFlags = sub.flags;
if (
(
!(subFlags & (SubscriberFlags.Tracking | SubscriberFlags.Recursed | SubscriberFlags.InnerEffectsPending | SubscriberFlags.ToCheckDirty | SubscriberFlags.Dirty))
&& (sub.flags = subFlags | targetFlag, true)
)
|| (
(subFlags & (SubscriberFlags.Tracking | SubscriberFlags.Recursed)) === SubscriberFlags.Recursed
&& (sub.flags = (subFlags & ~SubscriberFlags.Recursed) | targetFlag, true)
)
|| (
!(subFlags & (SubscriberFlags.InnerEffectsPending | SubscriberFlags.ToCheckDirty | SubscriberFlags.Dirty))
&& isValidLink(link, sub)
&& (
sub.flags = subFlags | SubscriberFlags.Recursed | targetFlag,
(sub as Dependency).subs !== undefined
)
)
) {
const subSubs = (sub as Dependency).subs;
if (subSubs !== undefined) {
propagate(
subSubs,
'notify' in sub
? SubscriberFlags.InnerEffectsPending
: SubscriberFlags.ToCheckDirty
);
} else if ('notify' in sub) {
if (queuedEffectsTail !== undefined) {
queuedEffectsTail.nextNotify = sub;
} else {
queuedEffects = sub;
}
queuedEffectsTail = sub;
}
} else if (
!(subFlags & (SubscriberFlags.Tracking | targetFlag))
|| (
!(subFlags & targetFlag)
&& (subFlags & (SubscriberFlags.InnerEffectsPending | SubscriberFlags.ToCheckDirty | SubscriberFlags.Dirty))
&& isValidLink(link, sub)
)
) {
sub.flags = subFlags | targetFlag;
}
link = link.nextSub!;
} while (link !== undefined);
if (targetFlag === SubscriberFlags.Dirty && !batchDepth) {
drainQueuedEffects();
}
}
export function checkDirty(link: Link): boolean {
do {
const dep = link.dep;
if ('update' in dep) {
const depFlags = dep.flags;
if (depFlags & SubscriberFlags.Dirty) {
if (dep.update()) {
const subs = dep.subs!;
if (subs.nextSub !== undefined) {
shallowPropagate(subs);
}
return true;
}
} else if (depFlags & SubscriberFlags.ToCheckDirty) {
if (checkDirty(dep.deps!)) {
if (dep.update()) {
const subs = dep.subs!;
if (subs.nextSub !== undefined) {
shallowPropagate(subs);
}
return true;
}
} else {
dep.flags = depFlags & ~SubscriberFlags.ToCheckDirty;
}
}
}
link = link.nextDep!;
} while (link !== undefined);
return false;
}
Version | Savings |
---|---|
0.3 | Satisfy all 4 constraints |
0.2 | Correctly schedule computed side effects |
0.1 | Correctly schedule inner effect callbacks |
0.0 | Add APIs: signal() , computed() , effect() , effectScope() , startBatch() , endBatch() |