Skip to content

CodeGen is a family of open-source model for program synthesis. Trained on TPU-v4. Competitive with OpenAI Codex.

License

Notifications You must be signed in to change notification settings

salesforce/CodeGen

CodeGen

Official release for the CodeGen1 and CodeGen2 models (350M, 1B, 3B, 7B 16B) for Program Synthesis by Salesforce AI Research.

News

July 2023

CodeGen2.5 released outperforming 16B parameter models with only 7B.

May 2023

CodeGen2.0 released with strong infill sampling capability.

March 2022

CodeGen1.0 released on par with OpenAI Codex at the time.

Publications

CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis
Erik Nijkamp*, Bo Pang*, Hiroaki Hayashi*, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and Caiming Xiong
ICLR, 2023

CodeGen2: Lessons for Training LLMs on Programming and Natural Languages
Erik Nijkamp*, Hiroaki Hayashi*, Caiming Xiong, Silvio Savarese, and Yingbo Zhou
ICLR, 2023

Usage

The models are available on the Hugging Face Hub.

CodeGen1.0

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen-2B-mono")
model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen-2B-mono")
inputs = tokenizer("# this function prints hello world", return_tensors="pt")
sample = model.generate(**inputs, max_length=128)
print(tokenizer.decode(sample[0], truncate_before_pattern=[r"\n\n^#", "^'''", "\n\n\n"]))

CodeGen2.0

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen2-7B")
model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen2-7B", trust_remote_code=True, revision="main")
inputs = tokenizer("# this function prints hello world", return_tensors="pt")
sample = model.generate(**inputs, max_length=128)
print(tokenizer.decode(sample[0], truncate_before_pattern=[r"\n\n^#", "^'''", "\n\n\n"]))

CodeGen2.5

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("Salesforce/codegen25-7b-mono", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Salesforce/codegen25-7b-mono")
inputs = tokenizer("# this function prints hello world", return_tensors="pt")
sample = model.generate(**inputs, max_length=128)
print(tokenizer.decode(sample[0]))

Training

The Jaxformer library for data pre-processing, training and fine-tuning the CodeGen models can be found here:

https://github.com/salesforce/jaxformer

Citation

If you find our code or paper useful, please cite the paper:

@article{nijkamp2022codegen,
  title={CodeGen: An Open Large Language Model for Code with Multi-Turn Program Synthesis},
  author={Nijkamp, Erik and Pang, Bo and Hayashi, Hiroaki and Tu, Lifu and Wang, Huan and Zhou, Yingbo and Savarese, Silvio and Xiong, Caiming},
  journal={ICLR},
  year={2023}
}

@article{nijkamp2023codegen2,
  title={CodeGen2: Lessons for Training LLMs on Programming and Natural Languages},
  author={Nijkamp, Erik and Hayashi, Hiroaki and Xiong, Caiming and Savarese, Silvio and Zhou, Yingbo},
  journal={ICLR},
  year={2023}
}

About

CodeGen is a family of open-source model for program synthesis. Trained on TPU-v4. Competitive with OpenAI Codex.

Topics

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages