Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add new_cyclic_in for Rc and Arc #129674

Merged
merged 8 commits into from
Sep 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
115 changes: 79 additions & 36 deletions library/alloc/src/rc.rs
Original file line number Diff line number Diff line change
Expand Up @@ -460,42 +460,7 @@ impl<T> Rc<T> {
where
F: FnOnce(&Weak<T>) -> T,
{
// Construct the inner in the "uninitialized" state with a single
// weak reference.
let uninit_ptr: NonNull<_> = Box::leak(Box::new(RcBox {
strong: Cell::new(0),
weak: Cell::new(1),
value: mem::MaybeUninit::<T>::uninit(),
}))
.into();

let init_ptr: NonNull<RcBox<T>> = uninit_ptr.cast();

let weak = Weak { ptr: init_ptr, alloc: Global };

// It's important we don't give up ownership of the weak pointer, or
// else the memory might be freed by the time `data_fn` returns. If
// we really wanted to pass ownership, we could create an additional
// weak pointer for ourselves, but this would result in additional
// updates to the weak reference count which might not be necessary
// otherwise.
let data = data_fn(&weak);

let strong = unsafe {
let inner = init_ptr.as_ptr();
ptr::write(ptr::addr_of_mut!((*inner).value), data);

let prev_value = (*inner).strong.get();
debug_assert_eq!(prev_value, 0, "No prior strong references should exist");
(*inner).strong.set(1);

Rc::from_inner(init_ptr)
};

// Strong references should collectively own a shared weak reference,
// so don't run the destructor for our old weak reference.
mem::forget(weak);
strong
Self::new_cyclic_in(data_fn, Global)
}

/// Constructs a new `Rc` with uninitialized contents.
Expand Down Expand Up @@ -766,6 +731,84 @@ impl<T, A: Allocator> Rc<T, A> {
}
}

/// Constructs a new `Rc<T, A>` in the given allocator while giving you a `Weak<T, A>` to the allocation,
/// to allow you to construct a `T` which holds a weak pointer to itself.
///
/// Generally, a structure circularly referencing itself, either directly or
/// indirectly, should not hold a strong reference to itself to prevent a memory leak.
/// Using this function, you get access to the weak pointer during the
/// initialization of `T`, before the `Rc<T, A>` is created, such that you can
/// clone and store it inside the `T`.
///
/// `new_cyclic_in` first allocates the managed allocation for the `Rc<T, A>`,
/// then calls your closure, giving it a `Weak<T, A>` to this allocation,
/// and only afterwards completes the construction of the `Rc<T, A>` by placing
/// the `T` returned from your closure into the allocation.
///
/// Since the new `Rc<T, A>` is not fully-constructed until `Rc<T, A>::new_cyclic_in`
/// returns, calling [`upgrade`] on the weak reference inside your closure will
/// fail and result in a `None` value.
///
/// # Panics
///
/// If `data_fn` panics, the panic is propagated to the caller, and the
/// temporary [`Weak<T, A>`] is dropped normally.
///
/// # Examples
///
/// See [`new_cyclic`].
///
/// [`new_cyclic`]: Rc::new_cyclic
/// [`upgrade`]: Weak::upgrade
#[cfg(not(no_global_oom_handling))]
#[unstable(feature = "allocator_api", issue = "32838")]
pub fn new_cyclic_in<F>(data_fn: F, alloc: A) -> Rc<T, A>
where
F: FnOnce(&Weak<T, A>) -> T,
{
// Construct the inner in the "uninitialized" state with a single
// weak reference.
let (uninit_raw_ptr, alloc) = Box::into_raw_with_allocator(Box::new_in(
RcBox {
strong: Cell::new(0),
weak: Cell::new(1),
value: mem::MaybeUninit::<T>::uninit(),
},
alloc,
));
let uninit_ptr: NonNull<_> = (unsafe { &mut *uninit_raw_ptr }).into();
let init_ptr: NonNull<RcBox<T>> = uninit_ptr.cast();

let weak = Weak { ptr: init_ptr, alloc: alloc };

// It's important we don't give up ownership of the weak pointer, or
// else the memory might be freed by the time `data_fn` returns. If
// we really wanted to pass ownership, we could create an additional
// weak pointer for ourselves, but this would result in additional
// updates to the weak reference count which might not be necessary
// otherwise.
let data = data_fn(&weak);

let strong = unsafe {
let inner = init_ptr.as_ptr();
ptr::write(ptr::addr_of_mut!((*inner).value), data);

let prev_value = (*inner).strong.get();
debug_assert_eq!(prev_value, 0, "No prior strong references should exist");
(*inner).strong.set(1);

// Strong references should collectively own a shared weak reference,
// so don't run the destructor for our old weak reference.
// Calling into_raw_with_allocator has the double effect of giving us back the allocator,
// and forgetting the weak reference.
let alloc = weak.into_raw_with_allocator().1;

Rc::from_inner_in(init_ptr, alloc)
};

strong
}

/// Constructs a new `Rc<T>` in the provided allocator, returning an error if the allocation
/// fails
///
Expand Down
141 changes: 93 additions & 48 deletions library/alloc/src/sync.rs
Original file line number Diff line number Diff line change
Expand Up @@ -450,54 +450,7 @@ impl<T> Arc<T> {
where
F: FnOnce(&Weak<T>) -> T,
{
// Construct the inner in the "uninitialized" state with a single
// weak reference.
let uninit_ptr: NonNull<_> = Box::leak(Box::new(ArcInner {
strong: atomic::AtomicUsize::new(0),
weak: atomic::AtomicUsize::new(1),
data: mem::MaybeUninit::<T>::uninit(),
}))
.into();
let init_ptr: NonNull<ArcInner<T>> = uninit_ptr.cast();

let weak = Weak { ptr: init_ptr, alloc: Global };

// It's important we don't give up ownership of the weak pointer, or
// else the memory might be freed by the time `data_fn` returns. If
// we really wanted to pass ownership, we could create an additional
// weak pointer for ourselves, but this would result in additional
// updates to the weak reference count which might not be necessary
// otherwise.
let data = data_fn(&weak);

// Now we can properly initialize the inner value and turn our weak
// reference into a strong reference.
let strong = unsafe {
let inner = init_ptr.as_ptr();
ptr::write(ptr::addr_of_mut!((*inner).data), data);

// The above write to the data field must be visible to any threads which
// observe a non-zero strong count. Therefore we need at least "Release" ordering
// in order to synchronize with the `compare_exchange_weak` in `Weak::upgrade`.
//
// "Acquire" ordering is not required. When considering the possible behaviours
// of `data_fn` we only need to look at what it could do with a reference to a
// non-upgradeable `Weak`:
// - It can *clone* the `Weak`, increasing the weak reference count.
// - It can drop those clones, decreasing the weak reference count (but never to zero).
//
// These side effects do not impact us in any way, and no other side effects are
// possible with safe code alone.
let prev_value = (*inner).strong.fetch_add(1, Release);
debug_assert_eq!(prev_value, 0, "No prior strong references should exist");

Arc::from_inner(init_ptr)
};

// Strong references should collectively own a shared weak reference,
// so don't run the destructor for our old weak reference.
mem::forget(weak);
strong
Self::new_cyclic_in(data_fn, Global)
}

/// Constructs a new `Arc` with uninitialized contents.
Expand Down Expand Up @@ -785,6 +738,98 @@ impl<T, A: Allocator> Arc<T, A> {
}
}

/// Constructs a new `Arc<T, A>` in the given allocator while giving you a `Weak<T, A>` to the allocation,
/// to allow you to construct a `T` which holds a weak pointer to itself.
///
/// Generally, a structure circularly referencing itself, either directly or
/// indirectly, should not hold a strong reference to itself to prevent a memory leak.
/// Using this function, you get access to the weak pointer during the
/// initialization of `T`, before the `Arc<T, A>` is created, such that you can
/// clone and store it inside the `T`.
///
/// `new_cyclic_in` first allocates the managed allocation for the `Arc<T, A>`,
/// then calls your closure, giving it a `Weak<T, A>` to this allocation,
/// and only afterwards completes the construction of the `Arc<T, A>` by placing
/// the `T` returned from your closure into the allocation.
///
/// Since the new `Arc<T, A>` is not fully-constructed until `Arc<T, A>::new_cyclic_in`
/// returns, calling [`upgrade`] on the weak reference inside your closure will
/// fail and result in a `None` value.
///
/// # Panics
///
/// If `data_fn` panics, the panic is propagated to the caller, and the
/// temporary [`Weak<T>`] is dropped normally.
///
/// # Example
///
/// See [`new_cyclic`]
///
/// [`new_cyclic`]: Arc::new_cyclic
/// [`upgrade`]: Weak::upgrade
#[cfg(not(no_global_oom_handling))]
#[inline]
#[unstable(feature = "allocator_api", issue = "32838")]
pub fn new_cyclic_in<F>(data_fn: F, alloc: A) -> Arc<T, A>
where
F: FnOnce(&Weak<T, A>) -> T,
{
// Construct the inner in the "uninitialized" state with a single
// weak reference.
let (uninit_raw_ptr, alloc) = Box::into_raw_with_allocator(Box::new_in(
ArcInner {
strong: atomic::AtomicUsize::new(0),
weak: atomic::AtomicUsize::new(1),
data: mem::MaybeUninit::<T>::uninit(),
},
alloc,
));
let uninit_ptr: NonNull<_> = (unsafe { &mut *uninit_raw_ptr }).into();
let init_ptr: NonNull<ArcInner<T>> = uninit_ptr.cast();

let weak = Weak { ptr: init_ptr, alloc: alloc };

// It's important we don't give up ownership of the weak pointer, or
// else the memory might be freed by the time `data_fn` returns. If
// we really wanted to pass ownership, we could create an additional
// weak pointer for ourselves, but this would result in additional
// updates to the weak reference count which might not be necessary
// otherwise.
let data = data_fn(&weak);

// Now we can properly initialize the inner value and turn our weak
// reference into a strong reference.
let strong = unsafe {
let inner = init_ptr.as_ptr();
ptr::write(ptr::addr_of_mut!((*inner).data), data);

// The above write to the data field must be visible to any threads which
// observe a non-zero strong count. Therefore we need at least "Release" ordering
// in order to synchronize with the `compare_exchange_weak` in `Weak::upgrade`.
//
// "Acquire" ordering is not required. When considering the possible behaviours
// of `data_fn` we only need to look at what it could do with a reference to a
// non-upgradeable `Weak`:
// - It can *clone* the `Weak`, increasing the weak reference count.
// - It can drop those clones, decreasing the weak reference count (but never to zero).
//
// These side effects do not impact us in any way, and no other side effects are
// possible with safe code alone.
let prev_value = (*inner).strong.fetch_add(1, Release);
debug_assert_eq!(prev_value, 0, "No prior strong references should exist");

// Strong references should collectively own a shared weak reference,
// so don't run the destructor for our old weak reference.
// Calling into_raw_with_allocator has the double effect of giving us back the allocator,
// and forgetting the weak reference.
let alloc = weak.into_raw_with_allocator().1;

Arc::from_inner_in(init_ptr, alloc)
};

strong
}

/// Constructs a new `Pin<Arc<T, A>>` in the provided allocator. If `T` does not implement `Unpin`,
/// then `data` will be pinned in memory and unable to be moved.
#[cfg(not(no_global_oom_handling))]
Expand Down
Loading