-
Notifications
You must be signed in to change notification settings - Fork 483
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
torchdata integration - multi-dataset and streaming support (#1929)
- Loading branch information
Showing
9 changed files
with
1,437 additions
and
25 deletions.
There are no files selected for viewing
122 changes: 122 additions & 0 deletions
122
recipes/configs/llama3_2_vision/11B_lora_multi_dataset.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,122 @@ | ||
# Config for multi-device LoRA finetuning in lora_finetune_distributed_td.py | ||
# using a Llama3.2 11B Vision Instruct model | ||
# | ||
# This config assumes that you've run the following command before launching: | ||
# tune download meta-llama/Llama-3.2-11B-Vision-Instruct --output-dir /tmp/Llama-3.2-11B-Vision-Instruct --ignore-patterns "original/consolidated*" | ||
# | ||
# To launch on 2 devices, run the following command from root: | ||
# tune run --nproc_per_node 2 lora_finetune_distributed_td --config llama3_2_vision/11B_lora_td | ||
# | ||
# You can add specific overrides through the command line. For example | ||
# to override the checkpointer directory while launching training: | ||
# tune run --nproc_per_node 2 lora_finetune_distributed_td --config llama3_2_vision/11B_lora_td checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> | ||
# | ||
# This config works best when the model is being fine-tuned on 2+ GPUs. | ||
# For single device LoRA finetuning please use 11B_lora_single_device.yaml | ||
# or 11B_qlora_single_device.yaml | ||
|
||
# Model arguments | ||
model: | ||
_component_: torchtune.models.llama3_2_vision.lora_llama3_2_vision_11b | ||
decoder_trainable: "frozen" | ||
encoder_trainable: "lora" | ||
fusion_trainable: "lora" | ||
lora_attn_modules: ['q_proj', 'v_proj'] | ||
apply_lora_to_mlp: False | ||
apply_lora_to_output: False | ||
lora_rank: 8 | ||
lora_alpha: 16 | ||
lora_dropout: 0.0 | ||
image_size: 560 # Make sure this matches the image_size in tokenizer | ||
|
||
# Transform | ||
tokenizer: | ||
_component_: torchtune.models.llama3_2_vision.llama3_2_vision_transform | ||
path: /tmp/Llama-3.2-11B-Vision-Instruct/original/tokenizer.model | ||
image_size: 560 | ||
max_seq_len: 8192 | ||
|
||
# Checkpointer | ||
checkpointer: | ||
_component_: torchtune.training.FullModelHFCheckpointer | ||
checkpoint_dir: /tmp/Llama-3.2-11B-Vision-Instruct/ | ||
checkpoint_files: | ||
filename_format: model-{}-of-{}.safetensors | ||
max_filename: "00005" | ||
recipe_checkpoint: null | ||
output_dir: /tmp/Llama-3.2-11B-Vision-Instruct/ | ||
model_type: LLAMA3_VISION | ||
resume_from_checkpoint: False | ||
save_adapter_weights_only: False # PeFT formatting not available yet. This will save it in torchtune format only. | ||
|
||
# TorchData setup | ||
dataloader: | ||
shuffle: True | ||
collate_fn: torchtune.data.padded_collate_tiled_images_and_mask | ||
parallel_method: thread | ||
num_workers: 4 # Per dataset | ||
pin_memory: true | ||
packed: False # Set to true for great speed ups | ||
prefetch_factor: 2 | ||
seed: null | ||
|
||
datasets: | ||
- source: HuggingFaceM4/the_cauldron | ||
subset: ocrvqa | ||
split: train | ||
transform: | ||
_component_: torchtune.datasets.multimodal.the_cauldron_transform | ||
weight: 1.0 | ||
- source: HuggingFaceM4/the_cauldron | ||
subset: dvqa | ||
split: train | ||
transform: | ||
_component_: torchtune.datasets.multimodal.the_cauldron_transform | ||
weight: 1.0 | ||
- source: HuggingFaceM4/the_cauldron | ||
subset: docvqa | ||
split: train | ||
transform: | ||
_component_: torchtune.datasets.multimodal.the_cauldron_transform | ||
weight: 1.0 | ||
- source: HuggingFaceM4/the_cauldron | ||
subset: tabmwp | ||
split: train | ||
transform: | ||
_component_: torchtune.datasets.multimodal.the_cauldron_transform | ||
weight: 1.0 | ||
|
||
# Fine-tuning arguments | ||
epochs: 1 | ||
# max_steps_per_epoch is required for progress bar | ||
max_steps_per_epoch: 50 | ||
batch_size: 4 | ||
gradient_accumulation_steps: 1 | ||
optimizer: | ||
_component_: torch.optim.AdamW | ||
fused: True | ||
weight_decay: 0.01 | ||
lr: 1e-4 | ||
|
||
lr_scheduler: | ||
_component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup | ||
num_warmup_steps: 100 | ||
loss: | ||
_component_: torchtune.modules.loss.CEWithChunkedOutputLoss | ||
clip_grad_norm: 1.0 | ||
compile: True # pytorch compile, set to true for perf/memory improvement | ||
|
||
# Training env | ||
device: cuda | ||
|
||
# Memory management | ||
enable_activation_checkpointing: True | ||
dtype: bf16 | ||
|
||
# Logging | ||
output_dir: /tmp/lora-llama3.2-vision-finetune | ||
metric_logger: | ||
_component_: torchtune.training.metric_logging.DiskLogger | ||
log_dir: /tmp/Llama-3.2-11B-Vision-Instruct/logs | ||
log_every_n_steps: 1 | ||
log_peak_memory_stats: True |
Oops, something went wrong.