Skip to content

Commit

Permalink
chore: update website (#1566)
Browse files Browse the repository at this point in the history
  • Loading branch information
mhamilton723 authored Jul 18, 2022
1 parent e9986fe commit db95a10
Show file tree
Hide file tree
Showing 104 changed files with 21,847 additions and 3,509 deletions.
11 changes: 11 additions & 0 deletions website/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -31,3 +31,14 @@ $ GIT_USER=<Your GitHub username> USE_SSH=true yarn deploy
```

If you are using GitHub pages for hosting, this command is a convenient way to build the website and push to the `gh-pages` branch.


### Adding a new versioned docs section

To add a version to the docs like `0.9.5` from the `website` directory
```
cd ../
sbt convertNotebooks
cd website
yarn run docusaurus docs:version 0.9.5`
````
55 changes: 55 additions & 0 deletions website/versioned_docs/version-0.10.0/about.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
---
title: SynapseML
sidebar_label: Introduction
hide_title: true
---

import useBaseUrl from "@docusaurus/useBaseUrl";

<div style={{textAlign: 'left'}}><img src={useBaseUrl("/img/logo.svg")} /></div>

# SynapseML

SynapseML is an ecosystem of tools aimed towards expanding the distributed computing framework
[Apache Spark](https://github.com/apache/spark) in several new directions.
SynapseML adds many deep learning and data science tools to the Spark ecosystem,
including seamless integration of Spark Machine Learning pipelines with [Microsoft Cognitive Toolkit
(CNTK)](https://github.com/Microsoft/CNTK), [LightGBM](https://github.com/Microsoft/LightGBM) and
[OpenCV](http://www.opencv.org/). These tools enable powerful and highly-scalable predictive and analytical models
for a variety of datasources.

SynapseML also brings new networking capabilities to the Spark Ecosystem. With the HTTP on Spark project, users
can embed **any** web service into their SparkML models. In this vein, SynapseML provides easy to use
SparkML transformers for a wide variety of [Microsoft Cognitive Services](https://azure.microsoft.com/en-us/services/cognitive-services/). For production grade deployment, the Spark Serving project enables high throughput,
sub-millisecond latency web services, backed by your Spark cluster.

SynapseML requires Scala 2.12, Spark 3.0+, and Python 3.6+.
See the API documentation [for
Scala](https://mmlspark.blob.core.windows.net/docs/0.10.0/scala/index.html#package) and [for
PySpark](https://mmlspark.blob.core.windows.net/docs/0.10.0/pyspark/index.html).

import Link from '@docusaurus/Link';

<Link to="/docs/getting_started/installation" className="button button--lg button--outline button--block button--primary">Get Started</Link>

## Examples

import NotebookExamples from "@theme/NotebookExamples";

<NotebookExamples/>

## Explore our Features

import FeatureCards from "@theme/FeatureCards";

<FeatureCards/>

## Papers

- [Large Scale Intelligent Microservices](https://arxiv.org/abs/2009.08044)

- [Conditional Image Retrieval](https://arxiv.org/abs/2007.07177)

- [SynapseML: Unifying Machine Learning Ecosystems at Massive Scales](https://arxiv.org/abs/1810.08744)

- [Flexible and Scalable Deep Learning with MMLSpark](https://arxiv.org/abs/1804.04031)
Original file line number Diff line number Diff line change
@@ -0,0 +1,161 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
import DocTable from "@theme/DocumentationTable";




## LightGBMClassifier

<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">

<!--pytest-codeblocks:cont-->

```python
from synapse.ml.lightgbm import *

lgbmClassifier = (LightGBMClassifier()
.setFeaturesCol("features")
.setRawPredictionCol("rawPrediction")
.setDefaultListenPort(12402)
.setNumLeaves(5)
.setNumIterations(10)
.setObjective("binary")
.setLabelCol("labels")
.setLeafPredictionCol("leafPrediction")
.setFeaturesShapCol("featuresShap"))
```

</TabItem>
<TabItem value="scala">

```scala
import com.microsoft.azure.synapse.ml.lightgbm._

val lgbmClassifier = (new LightGBMClassifier()
.setFeaturesCol("features")
.setRawPredictionCol("rawPrediction")
.setDefaultListenPort(12402)
.setNumLeaves(5)
.setNumIterations(10)
.setObjective("binary")
.setLabelCol("labels")
.setLeafPredictionCol("leafPrediction")
.setFeaturesShapCol("featuresShap"))
```

</TabItem>
</Tabs>

<DocTable className="LightGBMClassifier"
py="synapse.ml.lightgbm.html#module-synapse.ml.lightgbm.LightGBMClassifier"
scala="com/microsoft/azure/synapse/ml/lightgbm/LightGBMClassifier.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/lightgbm/src/main/scala/com/microsoft/azure/synapse/ml/lightgbm/LightGBMClassifier.scala" />


## LightGBMRanker

<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">




<!--pytest-codeblocks:cont-->

```python
from synapse.ml.lightgbm import *

lgbmRanker = (LightGBMRanker()
.setLabelCol("labels")
.setFeaturesCol("features")
.setGroupCol("query")
.setDefaultListenPort(12402)
.setRepartitionByGroupingColumn(False)
.setNumLeaves(5)
.setNumIterations(10))
```

</TabItem>
<TabItem value="scala">

```scala
import com.microsoft.azure.synapse.ml.lightgbm._

val lgbmRanker = (new LightGBMRanker()
.setLabelCol("labels")
.setFeaturesCol("features")
.setGroupCol("query")
.setDefaultListenPort(12402)
.setRepartitionByGroupingColumn(false)
.setNumLeaves(5)
.setNumIterations(10))
```

</TabItem>
</Tabs>

<DocTable className="LightGBMRanker"
py="synapse.ml.lightgbm.html#module-synapse.ml.lightgbm.LightGBMRanker"
scala="com/microsoft/azure/synapse/ml/lightgbm/LightGBMRanker.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/lightgbm/src/main/scala/com/microsoft/azure/synapse/ml/lightgbm/LightGBMRanker.scala" />


## LightGBMRegressor

<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">




<!--pytest-codeblocks:cont-->

```python
from synapse.ml.lightgbm import *

lgbmRegressor = (LightGBMRegressor()
.setLabelCol("labels")
.setFeaturesCol("features")
.setDefaultListenPort(12402)
.setNumLeaves(5)
.setNumIterations(10))
```

</TabItem>
<TabItem value="scala">

```scala
import com.microsoft.azure.synapse.ml.lightgbm._

val lgbmRegressor = (new LightGBMRegressor()
.setLabelCol("labels")
.setFeaturesCol("features")
.setDefaultListenPort(12402)
.setNumLeaves(5)
.setNumIterations(10))
```

</TabItem>
</Tabs>

<DocTable className="LightGBMRegressor"
py="synapse.ml.lightgbm.html#module-synapse.ml.lightgbm.LightGBMRegressor"
scala="com/microsoft/azure/synapse/ml/lightgbm/LightGBMRegressor.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/lightgbm/src/main/scala/com/microsoft/azure/synapse/ml/lightgbm/LightGBMRegressor.scala" />
110 changes: 110 additions & 0 deletions website/versioned_docs/version-0.10.0/documentation/estimators/_VW.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
import DocTable from "@theme/DocumentationTable";




## VowpalWabbitRegressor

<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">

<!--pytest-codeblocks:cont-->

```python
from synapse.ml.vw import *

vw = (VowpalWabbitRegressor()
.setLabelCol("Y1")
.setFeaturesCol("features")
.setPredictionCol("pred"))

vwRegressor = (VowpalWabbitRegressor()
.setNumPasses(20)
.setPassThroughArgs("--holdout_off --loss_function quantile -q :: -l 0.1"))
```

</TabItem>
<TabItem value="scala">

```scala
import com.microsoft.azure.synapse.ml.vw._

val vw = (new VowpalWabbitRegressor()
.setLabelCol("Y1")
.setFeaturesCol("features")
.setPredictionCol("pred"))

val vwRegressor = (new VowpalWabbitRegressor()
.setNumPasses(20)
.setPassThroughArgs("--holdout_off --loss_function quantile -q :: -l 0.1"))

```

</TabItem>
</Tabs>

<DocTable className="VowpalWabbitRegressor"
py="synapse.ml.vw.html#module-synapse.ml.vw.VowpalWabbitRegressor"
scala="com/microsoft/azure/synapse/ml/vw/VowpalWabbitRegressor.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/vw/src/main/scala/com/microsoft/azure/synapse/ml/vw/VowpalWabbitRegressor.scala" />


## VowpalWabbitContextualBandit

<Tabs
defaultValue="py"
values={[
{label: `Python`, value: `py`},
{label: `Scala`, value: `scala`},
]}>
<TabItem value="py">




<!--pytest-codeblocks:cont-->

```python
from synapse.ml.vw import *

cb = (VowpalWabbitContextualBandit()
.setPassThroughArgs("--cb_explore_adf --epsilon 0.2 --quiet")
.setLabelCol("cost")
.setProbabilityCol("prob")
.setChosenActionCol("chosen_action")
.setSharedCol("shared_features")
.setFeaturesCol("action_features")
.setUseBarrierExecutionMode(False))
```

</TabItem>
<TabItem value="scala">

```scala
import com.microsoft.azure.synapse.ml.vw._

val cb = (new VowpalWabbitContextualBandit()
.setPassThroughArgs("--cb_explore_adf --epsilon 0.2 --quiet")
.setLabelCol("cost")
.setProbabilityCol("prob")
.setChosenActionCol("chosen_action")
.setSharedCol("shared_features")
.setFeaturesCol("action_features")
.setUseBarrierExecutionMode(false))

```

</TabItem>
</Tabs>

<DocTable className="VowpalWabbitContextualBandit"
py="synapse.ml.vw.html#module-synapse.ml.vw.VowpalWabbitContextualBandit"
scala="com/microsoft/azure/synapse/ml/vw/VowpalWabbitContextualBandit.html"
sourceLink="https://github.com/microsoft/SynapseML/blob/master/vw/src/main/scala/com/microsoft/azure/synapse/ml/vw/VowpalWabbitContextualBandit.scala" />
Loading

0 comments on commit db95a10

Please sign in to comment.