Skip to content

Fix the sequence-parallelism for the dense model architecture #4891

Fix the sequence-parallelism for the dense model architecture

Fix the sequence-parallelism for the dense model architecture #4891

name: nv-torch-latest-cpu
on:
pull_request:
paths-ignore:
- 'docs/**'
- 'blogs/**'
merge_group:
branches: [ master ]
schedule:
- cron: "0 0 * * *"
concurrency:
group: ${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: true
jobs:
unit-tests:
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@v3
- id: setup-venv
uses: ./.github/workflows/setup-venv
- name: Install pytorch
run: |
pip install torch==1.12.0+cpu torchvision==0.13.0+cpu torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cpu
python -c "import torch; print('torch:', torch.__version__, torch)"
python -c "import torch; print('CUDA available:', torch.cuda.is_available())"
- name: Install deepspeed
run: |
pip install .[dev,autotuning]
ds_report
- name: Python environment
run: |
pip list
- name: Unit tests
run: |
unset TORCH_CUDA_ARCH_LIST # only jit compile for current arch
cd tests
TRANSFORMERS_CACHE=/tmp/transformers_cache/ pytest $PYTEST_OPTS -n 4 unit/ --torch_ver="1.12"
TRANSFORMERS_CACHE=/tmp/transformers_cache/ pytest $PYTEST_OPTS -m 'sequential' unit/ --torch_ver="1.12"