Skip to content

Commit

Permalink
update homework
Browse files Browse the repository at this point in the history
  • Loading branch information
kluophysics committed Sep 19, 2024
1 parent c579768 commit 6c4addd
Show file tree
Hide file tree
Showing 3 changed files with 194 additions and 1 deletion.
Binary file modified content/teaching/fall-2024/hw1.pdf
Binary file not shown.
2 changes: 1 addition & 1 deletion content/teaching/fall-2024/hw1.tex
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@
\raisebox{-2.0pt}{\quad\decofourleft\decotwo\decofourright\quad}\hrulefill}


\newcommand{\duedate}{\zhdate{2024/9/23}}
\newcommand{\duedate}{\zhdate{2024/9/26}}
\pagestyle{fancy}

% \fancyhf{}
Expand Down
193 changes: 193 additions & 0 deletions content/teaching/fall-2024/hw1_bak.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,193 @@
\documentclass[11pt]{article}
% \documentclass{assignment}

\usepackage[margin=1in]{geometry}
\usepackage{amsmath,amsthm,amssymb, graphicx, multicol, array}
\usepackage{ctex}
\usepackage{fancyhdr}
\usepackage{fontspec}
\usepackage{fourier-orns} %

% % http://kuing.infinityfreeapp.com/forum.php?mod=viewthread&tid=527&i=1
% \let\oldjuhao=。
% \catcode`\。=\active
% \newcommand{。}{\ifmmode\text{\oldjuhao}\else\oldjuhao\fi}

% \let\olddouhao=,
% \catcode`\,=\active
% \newcommand{,}{\ifmmode\text{\olddouhao}\else\olddouhao\fi}



\newcommand{\N}{\mathbb{N}}
\newcommand{\Z}{\mathbb{Z}}

\theoremstyle{remark}
\newtheorem{problem}{}


% \newenvironment{problem}[2][]{\begin{trivlist}
% \item[\hskip \labelsep {\bfseries #1}\hskip \labelsep {\bfseries #2}]}{\end{trivlist}}

\renewcommand{\headrule}{%
\vspace{-8pt}\hrulefill
\raisebox{-2.0pt}{\quad\decofourleft\decotwo\decofourright\quad}\hrulefill}


\newcommand{\duedate}{\zhdate{2024/9/23}}
\pagestyle{fancy}

% \fancyhf{}
% \fancyhead[LE]{\nouppercase{\rightmark\hfill\leftmark}}
% \fancyhead[RO]{\nouppercase{\leftmark\hfill\rightmark}}

%... then configure it.
\fancyhead{} % clear all header fields
% \fancyhead[LE]{\textbf{PHYS}}
% \fancyhead[L]{\textbf{\leftmark}}
% \fancyhead[L]{\chaptermark{}}
% \fancyhead[L]{\sectionmark{}}
% \fancyhead[LR]{\textbf{\leftmark}}
\fancyhead[L]{数学物理方法}
\zhnumsetup{style={Traditional,Financial}}
\fancyhead[R]{课后习题\zhnumber{1}}

% \fancyhead[RO]{\textbf{\rightmark}}

% \fancyhead[LO]{\textbf{Kai Luo}}
% \fancyhead[LO]{罗凯}

% \fancyhead[LE]{\nouppercase{\rightmark\hfill\leftmark}}
% \fancyhead[RO]{\nouppercase{\leftmark\hfill\rightmark}}

\fancyfoot{} % clear all footer fields
% \fancyfoot[CE,CO]{\rightmark}
% \fancyfoot[LO,CE]{}
% \fancyfoot[CO,RE]{Nanjing University of Science and Technology}
\fancyfoot[C]{\thepage}
\fancyfoot[L]{截止日期\duedate} % clear all footer fields
\fancyfoot[R]{任课教师:罗凯} % clear all footer fields

% \fancyfoot[CE,O]{\thechapter}



\begin{document}
\renewcommand{\labelenumi}{(\arabic{enumi})}
\renewcommand{\labelenumii}{(\arabic{enumi}.\arabic{enumii})}



% \title{习题01}
% \author{截止日期: }
% \author{罗凯\\
% 数学物理方法}
% \date{截止日期:}
% \maketitle

% \begin{problem}{1.1}
% 找出满足方程\[z - 2 = 3 \frac{1+ \imath t}{1-\imath t}, -\infty < t <\infty\]的所有点$z$.
% \end{problem}

% \begin{problem}{1.1}
% 写出下列复数的实部,虚部,模和辐角.
% \begin{enumerate}
% \item $1 + \imath \sqrt{3}$,
% \item $\frac{1-\imath}{1+\imath}$,
% \item $e^{z}$,
% \item $e^{1+\imath}$,
% \item $e^{\imath \varphi(x)}$, $\varphi(x)$是实数$x$的实函数.
% \end{enumerate}
% \end{problem}

\begin{problem}
写出下列复数的实部,虚部,模和辐角.
\begin{enumerate}
\item $1 + \imath \sqrt{3}$,
\item $\frac{1-\imath}{1+\imath}$,
\item $e^{z}$,
\item $e^{1+\imath}$,
\item $e^{\imath \varphi(x)}$, $\varphi(x)$是实数$x$的实函数.
\end{enumerate}
\end{problem}

\begin{problem}
证明以下规律:
\begin{enumerate}
\item 复数的加法和乘法满足结合律,即
\begin{itemize}
\item $(z_1 + z_2 ) + z_3 = z_1 +( z_2 + z_3)$
\item $(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)$
\end{itemize}

\item 复数乘积的共轭等于复数共轭的乘积,即$(z_1 \cdot z_2)^* = z_1^* z_2^*$.
\end{enumerate}
\end{problem}

\begin{problem}
找出复平面上满足方程\[|z - \imath a| = \lambda | z + \imath a|, \lambda > 0,\]
的所有点$z = x + \imath y$.请分$\lambda$的三种情况(1) $\lambda<1$, (2) $\lambda >1$,(3) $\lambda = 1$分别绘制图形.
\end{problem}

\begin{problem}
$|z|=1$, $a,b$为任意复数,试证明
$$
\left| \frac{a z + b}{\bar{b} z + \bar{a}} \right| = 1 .
$$
\end{problem}

\begin{problem}
试用$\cos\varphi, \sin\varphi$ 表示$\cos 4\varphi$.
\end{problem}

\begin{problem}
求下列方程的根,并在复平面上画出它们的位置.
\begin{enumerate}
\item $z^4 + 1 = 0$,
\item $z^2 + 2 z \cos \lambda + 1 = 0, \quad 0 < \lambda < \pi$.
\end{enumerate}
\end{problem}

\begin{problem}
验证
$$
\tan^{-1}(z)=\frac{\imath }{2}[\ln (1-\imath z)-\ln (1+\imath z)] .
$$
\end{problem}


\begin{problem}
试证明极坐标下的柯西-黎曼方程
$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial \rho}=\frac{1}{\rho} \frac{\partial v}{\partial \varphi} ,\\
\frac{1}{\rho} \frac{\partial u}{\partial \varphi}=-\frac{\partial v}{\partial \rho} .
\end{array}\right.
$$
\end{problem}

% \begin{problem}
% 已知解析函数 $f(z)$ 的实部 $u(x, y)$或虚部$ v(x, y)$, 求该解析函数.
% \begin{enumerate}
% \item $u = e^x \sin{y}$,
% \item $u = x^2 - y^2 + xy$, $f(0) = 0$.
% \end{enumerate}
% \end{problem}

% \begin{proof}[Solution]
% Write a solution here
% \begin{align*}
% x &= y
% \end{align*}
% \begin{tabular}{| >{\centering\arraybackslash}m{1in} | >{\centering\arraybackslash}m{1in} | >{\centering\arraybackslash}m{1in} | >{\centering\arraybackslash}m{1in} |>{\centering\arraybackslash}m{1in} |}
% \hline
% \textbf{A} & \textbf{B} & \textbf{C} & \textbf{D} &\textbf{E} \\[8pt]
% \hline
% a & b & c & d & e \\[8pt]
% \hline
% f & g &h & i & j \\[8pt]
% \hline
% \end{tabular}
% \end{proof}

\end{document}

0 comments on commit 6c4addd

Please sign in to comment.