Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix and add tests for constant offset in objective function #76

Merged
merged 2 commits into from
Nov 29, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
20 changes: 13 additions & 7 deletions src/algorithms/Chalmet.jl
Original file line number Diff line number Diff line change
Expand Up @@ -27,12 +27,10 @@ function _solve_constrained_model(
f = MOI.Utilities.scalarize(model.f)
g = sum(1.0 * fi for fi in f)
MOI.set(model.inner, MOI.ObjectiveFunction{typeof(g)}(), g)
constraints = [
MOI.add_constraint(model.inner, f[1], MOI.LessThan(rhs[1] - 1))
MOI.add_constraint(model.inner, f[2], MOI.LessThan(rhs[2] - 1))
]
sets = MOI.LessThan.(rhs .- 1)
c = MOI.Utilities.normalize_and_add_constraint.(model.inner, f, sets)
MOI.optimize!(model.inner)
MOI.delete.(model, constraints)
MOI.delete.(model, c)
status = MOI.get(model.inner, MOI.TerminationStatus())
if !_is_scalar_status_optimal(status)
return status, nothing
Expand Down Expand Up @@ -74,7 +72,11 @@ function optimize_multiobjective!(algorithm::Chalmet, model::Optimizer)
end
_, y1[2] = _compute_point(model, variables, f2)
MOI.set(model.inner, MOI.ObjectiveFunction{typeof(f1)}(), f1)
y1_constraint = MOI.add_constraint(model.inner, f2, MOI.LessThan(y1[2]))
y1_constraint = MOI.Utilities.normalize_and_add_constraint(
model.inner,
f2,
MOI.LessThan(y1[2]),
)
MOI.optimize!(model.inner)
x1, y1[1] = _compute_point(model, variables, f1)
MOI.delete(model.inner, y1_constraint)
Expand All @@ -90,7 +92,11 @@ function optimize_multiobjective!(algorithm::Chalmet, model::Optimizer)
return MOI.OPTIMAL, [solutions]
end
MOI.set(model.inner, MOI.ObjectiveFunction{typeof(f2)}(), f2)
y2_constraint = MOI.add_constraint(model.inner, f1, MOI.LessThan(y2[1]))
y2_constraint = MOI.Utilities.normalize_and_add_constraint(
model.inner,
f1,
MOI.LessThan(y2[1]),
)
MOI.optimize!(model.inner)
x2, y2[2] = _compute_point(model, variables, f2)
MOI.delete(model.inner, y2_constraint)
Expand Down
13 changes: 10 additions & 3 deletions src/algorithms/EpsilonConstraint.jl
Original file line number Diff line number Diff line change
Expand Up @@ -104,7 +104,14 @@ function optimize_multiobjective!(
else
MOI.GreaterThan{Float64}, left
end
ci = MOI.add_constraint(model, f1, SetType(bound))
constant = MOI.constant(f1, Float64)
ci = MOI.Utilities.normalize_and_add_constraint(
model,
f1,
SetType(bound);
allow_modify_function = true,
)
bound -= constant
status = MOI.OPTIMAL
for _ in 1:n_points
if _time_limit_exceeded(model, start_time)
Expand All @@ -121,9 +128,9 @@ function optimize_multiobjective!(
push!(solutions, SolutionPoint(X, Y))
end
if sense == MOI.MIN_SENSE
bound = min(Y[1] - ε, bound - ε)
bound = min(Y[1] - constant - ε, bound - ε)
else
bound = max(Y[1] + ε, bound + ε)
bound = max(Y[1] - constant + ε, bound + ε)
end
end
MOI.delete(model, ci)
Expand Down
3 changes: 2 additions & 1 deletion src/algorithms/Hierarchical.jl
Original file line number Diff line number Diff line change
Expand Up @@ -117,7 +117,8 @@ function optimize_multiobjective!(algorithm::Hierarchical, model::Optimizer)
else
MOI.GreaterThan(Y[i] - rtol * abs(Y[i]))
end
push!(constraints, MOI.add_constraint(model, fi, set))
ci = MOI.Utilities.normalize_and_add_constraint(model, fi, set)
push!(constraints, ci)
end
end
X, Y = _compute_point(model, variables, model.f)
Expand Down
13 changes: 10 additions & 3 deletions src/algorithms/KirlikSayin.jl
Original file line number Diff line number Diff line change
Expand Up @@ -152,7 +152,11 @@ function optimize_multiobjective!(algorithm::KirlikSayin, model::Optimizer)
)
for (i, f_i) in enumerate(scalars)
if i != k
ci = MOI.add_constraint(model.inner, f_i, SetType(ε[i] + δ))
ci = MOI.Utilities.normalize_and_add_constraint(
model.inner,
f_i,
SetType(ε[i] + δ),
)
push!(ε_constraints, ci)
end
end
Expand All @@ -168,8 +172,11 @@ function optimize_multiobjective!(algorithm::KirlikSayin, model::Optimizer)
sum_f = sum(1.0 * s for s in scalars)
MOI.set(model.inner, MOI.ObjectiveFunction{typeof(sum_f)}(), sum_f)
# Constraint to eliminate weak dominance
zₖ_constraint =
MOI.add_constraint(model.inner, scalars[k], MOI.EqualTo(zₖ))
zₖ_constraint = MOI.Utilities.normalize_and_add_constraint(
model.inner,
scalars[k],
MOI.EqualTo(zₖ),
)
MOI.optimize!(model.inner)
MOI.delete.(model, ε_constraints)
MOI.delete(model, zₖ_constraint)
Expand Down
3 changes: 2 additions & 1 deletion src/algorithms/Lexicographic.jl
Original file line number Diff line number Diff line change
Expand Up @@ -121,7 +121,8 @@ function _solve_in_sequence(
else
MOI.GreaterThan(Y - rtol * abs(Y))
end
push!(constraints, MOI.add_constraint(model, f, set))
ci = MOI.Utilities.normalize_and_add_constraint(model, f, set)
push!(constraints, ci)
end
for c in constraints
MOI.delete(model, c)
Expand Down
9 changes: 6 additions & 3 deletions src/algorithms/TambyVanderpooten.jl
Original file line number Diff line number Diff line change
Expand Up @@ -143,7 +143,7 @@ function optimize_multiobjective!(
ε_constraints = Any[]
for (i, f_i) in enumerate(scalars)
if i != k
ci = MOI.add_constraint(
ci = MOI.Utilities.normalize_and_add_constraint(
model.inner,
f_i,
MOI.LessThan{Float64}(u[i] - 1),
Expand Down Expand Up @@ -171,8 +171,11 @@ function optimize_multiobjective!(
y_k = MOI.get(model.inner, MOI.ObjectiveValue())
sum_f = sum(1.0 * s for s in scalars)
MOI.set(model.inner, MOI.ObjectiveFunction{typeof(sum_f)}(), sum_f)
y_k_constraint =
MOI.add_constraint(model.inner, scalars[k], MOI.EqualTo(y_k))
y_k_constraint = MOI.Utilities.normalize_and_add_constraint(
model.inner,
scalars[k],
MOI.EqualTo(y_k),
)
MOI.optimize!(model.inner)
if !_is_scalar_status_optimal(model)
return status, nothing
Expand Down
8 changes: 4 additions & 4 deletions test/algorithms/Chalmet.jl
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,7 @@ function test_knapsack_max()
MOI.VectorAffineTerm(i, MOI.ScalarAffineTerm(C[i, j], x[j])) for
i in 1:2 for j in 1:n
],
[0.0, 0.0],
[1.0, 0.0],
)
MOI.set(model, MOI.ObjectiveSense(), MOI.MAX_SENSE)
MOI.set(model, MOI.ObjectiveFunction{typeof(f)}(), f)
Expand All @@ -109,9 +109,9 @@ function test_knapsack_max()
0 1 1 1 1 0 1 0 1 1
]
Y_N = Float64[
2854 4636
3394 3817
3042 4627
2855 4636
3395 3817
3043 4627
]
N = MOI.get(model, MOI.ResultCount())
x_sol = hcat([MOI.get(model, MOI.VariablePrimal(i), x) for i in 1:N]...)
Expand Down
12 changes: 6 additions & 6 deletions test/algorithms/Dichotomy.jl
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ function test_moi_bolp_1()
model,
"""
variables: x, y
minobjective: [2 * x + y, x + 3 * y]
minobjective: [2 * x + y + 1, x + 3 * y]
c1: x + y >= 1.0
c2: 0.5 * x + y >= 0.75
c3: x >= 0.0
Expand All @@ -60,15 +60,15 @@ c4: y >= 0.25
@test MOI.get(model, MOI.TerminationStatus()) == MOI.OPTIMAL
@test MOI.get(model, MOI.ResultCount()) == 3
X = [[0.0, 1.0], [0.5, 0.5], [1.0, 0.25]]
Y = [[1.0, 3.0], [1.5, 2.0], [2.25, 1.75]]
Y = [[2.0, 3.0], [2.5, 2.0], [3.25, 1.75]]
for i in 1:3
@test MOI.get(model, MOI.PrimalStatus(i)) == MOI.FEASIBLE_POINT
@test MOI.get(model, MOI.DualStatus(i)) == MOI.NO_SOLUTION
@test MOI.get(model, MOI.ObjectiveValue(i)) == Y[i]
@test MOI.get(model, MOI.VariablePrimal(i), x) == X[i][1]
@test MOI.get(model, MOI.VariablePrimal(i), y) == X[i][2]
end
@test MOI.get(model, MOI.ObjectiveBound()) == [1.0, 1.75]
@test MOI.get(model, MOI.ObjectiveBound()) == [2.0, 1.75]
return
end

Expand All @@ -83,7 +83,7 @@ function test_moi_bolp_1_maximize()
model,
"""
variables: x, y
maxobjective: [-2.0 * x + -1.0 * y, -1.0 * x + -3.0 * y]
maxobjective: [-2.0 * x + -1.0 * y, -1.0 * x + -3.0 * y + 0.5]
c1: x + y >= 1.0
c2: 0.5 * x + y >= 0.75
c3: x >= 0.0
Expand All @@ -96,15 +96,15 @@ c4: y >= 0.25
@test MOI.get(model, MOI.TerminationStatus()) == MOI.OPTIMAL
@test MOI.get(model, MOI.ResultCount()) == 3
X = [[0.0, 1.0], [0.5, 0.5], [1.0, 0.25]]
Y = [-[1.0, 3.0], -[1.5, 2.0], -[2.25, 1.75]]
Y = [-[1.0, 2.5], -[1.5, 1.5], -[2.25, 1.25]]
for i in 1:3
@test MOI.get(model, MOI.PrimalStatus(i)) == MOI.FEASIBLE_POINT
@test MOI.get(model, MOI.DualStatus(i)) == MOI.NO_SOLUTION
@test MOI.get(model, MOI.ObjectiveValue(i)) == Y[i]
@test MOI.get(model, MOI.VariablePrimal(i), x) == X[i][1]
@test MOI.get(model, MOI.VariablePrimal(i), y) == X[i][2]
end
@test MOI.get(model, MOI.ObjectiveBound()) == -[1.0, 1.75]
@test MOI.get(model, MOI.ObjectiveBound()) == -[1.0, 1.25]
return
end

Expand Down
3 changes: 2 additions & 1 deletion test/algorithms/DominguezRios.jl
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ function test_knapsack_min_p3()
MOI.VectorAffineTerm(i, MOI.ScalarAffineTerm(-C[i, j], x[j]))
for i in 1:p for j in 1:n
],
fill(0.0, p),
ones(p),
)
MOI.set(model, MOI.ObjectiveSense(), MOI.MIN_SENSE)
MOI.set(model, MOI.ObjectiveFunction{typeof(f)}(), f)
Expand All @@ -77,6 +77,7 @@ function test_knapsack_min_p3()
-2997 -3539 -3509
-2518 -3866 -3191
]
Y_N .+= 1
N = MOI.get(model, MOI.ResultCount())
x_sol = hcat([MOI.get(model, MOI.VariablePrimal(i), x) for i in 1:N]...)
@test isapprox(sort(x_sol; dims = 1), sort(X_E'; dims = 1); atol = 1e-6)
Expand Down
19 changes: 10 additions & 9 deletions test/algorithms/EpsilonConstraint.jl
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@ function test_biobjective_knapsack()
Float64,
[sum(1.0 * p[i] * x[i] for i in 1:length(w)) for p in [p1, p2]]...,
)
f.constants[1] = 1.0
MOI.set(model, MOI.ObjectiveFunction{typeof(f)}(), f)
MOI.add_constraint(
model,
Expand All @@ -48,15 +49,15 @@ function test_biobjective_knapsack()
)
MOI.optimize!(model)
results = Dict(
[955, 906] => [2, 3, 5, 6, 9, 10, 11, 14, 15, 16, 17],
[949, 915] => [1, 2, 5, 6, 8, 9, 10, 11, 15, 16, 17],
[948, 939] => [1, 2, 3, 5, 6, 8, 10, 11, 15, 16, 17],
[943, 940] => [2, 3, 5, 6, 8, 9, 10, 11, 15, 16, 17],
[936, 942] => [1, 2, 3, 5, 6, 10, 11, 12, 15, 16, 17],
[935, 947] => [2, 5, 6, 8, 9, 10, 11, 12, 15, 16, 17],
[934, 971] => [2, 3, 5, 6, 8, 10, 11, 12, 15, 16, 17],
[927, 972] => [2, 3, 5, 6, 8, 9, 10, 11, 12, 16, 17],
[918, 983] => [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17],
[956, 906] => [2, 3, 5, 6, 9, 10, 11, 14, 15, 16, 17],
[950, 915] => [1, 2, 5, 6, 8, 9, 10, 11, 15, 16, 17],
[949, 939] => [1, 2, 3, 5, 6, 8, 10, 11, 15, 16, 17],
[944, 940] => [2, 3, 5, 6, 8, 9, 10, 11, 15, 16, 17],
[937, 942] => [1, 2, 3, 5, 6, 10, 11, 12, 15, 16, 17],
[936, 947] => [2, 5, 6, 8, 9, 10, 11, 12, 15, 16, 17],
[935, 971] => [2, 3, 5, 6, 8, 10, 11, 12, 15, 16, 17],
[928, 972] => [2, 3, 5, 6, 8, 9, 10, 11, 12, 16, 17],
[919, 983] => [2, 3, 4, 5, 6, 8, 10, 11, 12, 16, 17],
)
@test MOI.get(model, MOI.ResultCount()) == 9
for i in 1:MOI.get(model, MOI.ResultCount())
Expand Down
4 changes: 4 additions & 0 deletions test/algorithms/Hierarchical.jl
Original file line number Diff line number Diff line change
Expand Up @@ -46,11 +46,15 @@ function test_knapsack()
MOI.add_constraint.(model, x, MOI.LessThan(1.0))
MOI.set(model, MOI.ObjectiveSense(), MOI.MAX_SENSE)
f = MOI.Utilities.operate(vcat, Float64, P * x...)
f.constants[4] = 1_000.0
MOI.set(model, MOI.ObjectiveFunction{typeof(f)}(), f)
MOI.add_constraint(model, sum(1.0 * x[i] for i in 1:4), MOI.LessThan(2.0))
MOI.optimize!(model)
@test MOI.get(model, MOI.ResultCount()) == 1
x_sol = MOI.get(model, MOI.VariablePrimal(), x)
@test ≈(x_sol, [0.9, 0, 0.9, 0.2]; atol = 1e-3)
y_sol = MOI.get(model, MOI.ObjectiveValue())
@test ≈(y_sol, P * x_sol .+ [0.0, 0.0, 0.0, 1_000.0]; atol = 1e-4)
return
end

Expand Down
3 changes: 2 additions & 1 deletion test/algorithms/KirlikSayin.jl
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ function test_knapsack_min_p3()
MOI.VectorAffineTerm(i, MOI.ScalarAffineTerm(-C[i, j], x[j]))
for i in 1:p for j in 1:n
],
fill(0.0, p),
ones(p),
)
MOI.set(model, MOI.ObjectiveSense(), MOI.MIN_SENSE)
MOI.set(model, MOI.ObjectiveFunction{typeof(f)}(), f)
Expand All @@ -74,6 +74,7 @@ function test_knapsack_min_p3()
-2518 -3866 -3191
-2854 -4636 -3076
]
Y_N .+= 1
N = MOI.get(model, MOI.ResultCount())
x_sol = hcat([MOI.get(model, MOI.VariablePrimal(i), x) for i in 1:N]...)
@test isapprox(sort(x_sol; dims = 1), sort(X_E'; dims = 1); atol = 1e-6)
Expand Down
4 changes: 4 additions & 0 deletions test/algorithms/Lexicographic.jl
Original file line number Diff line number Diff line change
Expand Up @@ -36,11 +36,15 @@ function test_knapsack()
MOI.add_constraint.(model, x, MOI.LessThan(1.0))
MOI.set(model, MOI.ObjectiveSense(), MOI.MAX_SENSE)
f = MOI.Utilities.operate(vcat, Float64, P * x...)
f.constants[4] = 1_000.0
MOI.set(model, MOI.ObjectiveFunction{typeof(f)}(), f)
MOI.add_constraint(model, sum(1.0 * x[i] for i in 1:4), MOI.LessThan(2.0))
MOI.optimize!(model)
@test MOI.get(model, MOI.ResultCount()) == 1
x_sol = MOI.get(model, MOI.VariablePrimal(), x)
@test ≈(x_sol, [0.9, 1, 0, 0.1]; atol = 1e-3)
y_sol = MOI.get(model, MOI.ObjectiveValue())
@test ≈(y_sol, P * x_sol .+ [0.0, 0.0, 0.0, 1_000.0]; atol = 1e-4)
return
end

Expand Down
3 changes: 2 additions & 1 deletion test/algorithms/TambyVanderpooten.jl
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ function test_knapsack_min_p3()
MOI.VectorAffineTerm(i, MOI.ScalarAffineTerm(-C[i, j], x[j]))
for i in 1:p for j in 1:n
],
fill(0.0, p),
ones(p),
)
MOI.set(model, MOI.ObjectiveSense(), MOI.MIN_SENSE)
MOI.set(model, MOI.ObjectiveFunction{typeof(f)}(), f)
Expand All @@ -74,6 +74,7 @@ function test_knapsack_min_p3()
-2518 -3866 -3191
-2854 -4636 -3076
]
Y_N .+= 1
N = MOI.get(model, MOI.ResultCount())
x_sol = hcat([MOI.get(model, MOI.VariablePrimal(i), x) for i in 1:N]...)'
y_sol = hcat([MOI.get(model, MOI.ObjectiveValue(i)) for i in 1:N]...)'
Expand Down
Loading