forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[MXNet-1375][Fit API]Added RNN integration test for fit() API (apache…
…#14547) * Added RNN integration test for fit() API * Addressed review comments: change in JenkinFile, tmp directory, ctx with condense if/else, renamed imports * CPU test doesn't require nvidiadocker container * Modified the structure by removing the redundant code
- Loading branch information
Showing
3 changed files
with
306 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,276 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
"""Gluon Text Sentiment Classification Example using RNN/CNN | ||
Example modified from below link: | ||
https://github.com/d2l-ai/d2l-en/blob/master/chapter_natural-language-processing/sentiment-analysis-rnn.md | ||
https://github.com/d2l-ai/d2l-en/blob/master/chapter_natural-language-processing/sentiment-analysis-cnn.md""" | ||
|
||
import argparse | ||
import os | ||
import tarfile | ||
import random | ||
import collections | ||
import mxnet as mx | ||
from mxnet import nd, gluon | ||
from mxnet.contrib import text | ||
from mxnet.gluon import nn, rnn | ||
from mxnet.gluon.estimator import estimator | ||
|
||
|
||
class TextCNN(nn.Block): | ||
def __init__(self, vocab, embed_size, kernel_sizes, num_channels, | ||
**kwargs): | ||
super(TextCNN, self).__init__(**kwargs) | ||
self.embedding = nn.Embedding(len(vocab), embed_size) | ||
# The embedding layer does not participate in training | ||
self.constant_embedding = nn.Embedding(len(vocab), embed_size) | ||
self.dropout = nn.Dropout(0.5) | ||
self.decoder = nn.Dense(2) | ||
# The max-over-time pooling layer has no weight, so it can share an | ||
# instance | ||
self.pool = nn.GlobalMaxPool1D() | ||
# Create multiple one-dimensional convolutional layers | ||
self.convs = nn.Sequential() | ||
for c, k in zip(num_channels, kernel_sizes): | ||
self.convs.add(nn.Conv1D(c, k, activation='relu')) | ||
|
||
def forward(self, inputs): | ||
# Concatenate the output of two embedding layers with shape of | ||
# (batch size, number of words, word vector dimension) by word vector | ||
embeddings = nd.concat( | ||
self.embedding(inputs), self.constant_embedding(inputs), dim=2) | ||
# According to the input format required by Conv1D, the word vector | ||
# dimension, that is, the channel dimension of the one-dimensional | ||
# convolutional layer, is transformed into the previous dimension | ||
embeddings = embeddings.transpose((0, 2, 1)) | ||
# For each one-dimensional convolutional layer, after max-over-time | ||
# pooling, an NDArray with the shape of (batch size, channel size, 1) | ||
# can be obtained. Use the flatten function to remove the last | ||
# dimension and then concatenate on the channel dimension | ||
encoding = nd.concat(*[nd.flatten( | ||
self.pool(conv(embeddings))) for conv in self.convs], dim=1) | ||
# After applying the dropout method, use a fully connected layer to | ||
# obtain the output | ||
outputs = self.decoder(self.dropout(encoding)) | ||
return outputs | ||
|
||
|
||
class BiRNN(nn.Block): | ||
def __init__(self, vocab, embed_size, num_hiddens, num_layers, **kwargs): | ||
super(BiRNN, self).__init__(**kwargs) | ||
self.embedding = nn.Embedding(len(vocab), embed_size) | ||
# Set Bidirectional to True to get a bidirectional recurrent neural | ||
# network | ||
self.encoder = rnn.LSTM(num_hiddens, num_layers=num_layers, | ||
bidirectional=True, input_size=embed_size) | ||
self.decoder = nn.Dense(2) | ||
|
||
def forward(self, inputs): | ||
# The shape of inputs is (batch size, number of words). Because LSTM | ||
# needs to use sequence as the first dimension, the input is | ||
# transformed and the word feature is then extracted. The output shape | ||
# is (number of words, batch size, word vector dimension). | ||
embeddings = self.embedding(inputs.T) | ||
# The shape of states is (number of words, batch size, 2 * number of | ||
# hidden units). | ||
states = self.encoder(embeddings) | ||
# Concatenate the hidden states of the initial time step and final | ||
# time step to use as the input of the fully connected layer. Its | ||
# shape is (batch size, 4 * number of hidden units) | ||
encoding = nd.concat(states[0], states[-1]) | ||
outputs = self.decoder(encoding) | ||
return outputs | ||
|
||
|
||
def download_imdb(data_dir='/tmp/data'): | ||
''' | ||
Download and extract the IMDB dataset | ||
''' | ||
url = ('http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz') | ||
sha1 = '01ada507287d82875905620988597833ad4e0903' | ||
if not os.path.exists(data_dir): | ||
os.makedirs(data_dir) | ||
file_path = os.path.join(data_dir, 'aclImdb_v1.tar.gz') | ||
if not os.path.isfile(file_path): | ||
file_path = gluon.utils.download(url, data_dir, sha1_hash=sha1) | ||
with tarfile.open(file_path, 'r') as f: | ||
f.extractall(data_dir) | ||
|
||
|
||
def read_imdb(folder='train'): | ||
''' | ||
Read the IMDB dataset | ||
''' | ||
data = [] | ||
for label in ['pos', 'neg']: | ||
folder_name = os.path.join('/tmp/data/aclImdb/', folder, label) | ||
for file in os.listdir(folder_name): | ||
with open(os.path.join(folder_name, file), 'rb') as f: | ||
review = f.read().decode('utf-8').replace('\n', '').lower() | ||
data.append([review, 1 if label == 'pos' else 0]) | ||
random.shuffle(data) | ||
return data | ||
|
||
|
||
def get_tokenized_imdb(data): | ||
''' | ||
Tokenized the words | ||
''' | ||
|
||
def tokenizer(text): | ||
return [tok.lower() for tok in text.split(' ')] | ||
|
||
return [tokenizer(review) for review, _ in data] | ||
|
||
|
||
def get_vocab_imdb(data): | ||
''' | ||
Get the indexed tokens | ||
''' | ||
tokenized_data = get_tokenized_imdb(data) | ||
counter = collections.Counter([tk for st in tokenized_data for tk in st]) | ||
return text.vocab.Vocabulary(counter, min_freq=5) | ||
|
||
|
||
def preprocess_imdb(data, vocab): | ||
''' | ||
Make the length of each comment 500 by truncating or adding 0s | ||
''' | ||
max_l = 500 | ||
|
||
def pad(x): | ||
return x[:max_l] if len(x) > max_l else x + [0] * (max_l - len(x)) | ||
|
||
tokenized_data = get_tokenized_imdb(data) | ||
features = nd.array([pad(vocab.to_indices(x)) for x in tokenized_data]) | ||
labels = nd.array([score for _, score in data]) | ||
return features, labels | ||
|
||
|
||
def run(net, train_dataloader, test_dataloader, **kwargs): | ||
''' | ||
Train a test sentiment model | ||
''' | ||
num_epochs = kwargs['epochs'] | ||
ctx = kwargs['ctx'] | ||
batch_size = kwargs['batch_size'] | ||
lr = kwargs['lr'] | ||
|
||
# Define trainer | ||
trainer = mx.gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': lr}) | ||
# Define loss and evaluation metrics | ||
loss = gluon.loss.SoftmaxCrossEntropyLoss() | ||
acc = mx.metric.Accuracy() | ||
|
||
# Define estimator | ||
est = estimator.Estimator(net=net, loss=loss, metrics=acc, | ||
trainers=trainer, context=ctx) | ||
# Begin training | ||
est.fit(train_data=train_dataloader, val_data=test_dataloader, | ||
epochs=num_epochs, batch_size=batch_size) | ||
return est | ||
|
||
|
||
def test_estimator_cpu(**kwargs): | ||
''' | ||
Test estimator by doing one pass over each model with synthetic data | ||
''' | ||
models = ['TextCNN', 'BiRNN'] | ||
ctx = kwargs['ctx'] | ||
batch_size = kwargs['batch_size'] | ||
embed_size = kwargs['embed_size'] | ||
|
||
train_data = mx.nd.random.randint(low=0, high=100, shape=(2 * batch_size, 500)) | ||
train_label = mx.nd.random.randint(low=0, high=2, shape=(2 * batch_size,)) | ||
val_data = mx.nd.random.randint(low=0, high=100, shape=(batch_size, 500)) | ||
val_label = mx.nd.random.randint(low=0, high=2, shape=(batch_size,)) | ||
|
||
train_dataloader = gluon.data.DataLoader(dataset=gluon.data.ArrayDataset(train_data, train_label), | ||
batch_size=batch_size, shuffle=True) | ||
val_dataloader = gluon.data.DataLoader(dataset=gluon.data.ArrayDataset(val_data, val_label), | ||
batch_size=batch_size) | ||
vocab_list = mx.nd.zeros(shape=(100,)) | ||
|
||
# Get the model | ||
for model in models: | ||
if model == 'TextCNN': | ||
kernel_sizes, nums_channels = [3, 4, 5], [100, 100, 100] | ||
net = TextCNN(vocab_list, embed_size, kernel_sizes, nums_channels) | ||
else: | ||
num_hiddens, num_layers = 100, 2 | ||
net = BiRNN(vocab_list, embed_size, num_hiddens, num_layers) | ||
net.initialize(mx.init.Xavier(), ctx=ctx) | ||
|
||
run(net, train_dataloader, val_dataloader, **kwargs) | ||
|
||
|
||
def test_estimator_gpu(**kwargs): | ||
''' | ||
Test estimator by training Bidirectional RNN for 5 epochs on the IMDB dataset | ||
and verify accuracy | ||
''' | ||
ctx = kwargs['ctx'] | ||
batch_size = kwargs['batch_size'] | ||
num_epochs = kwargs['epochs'] | ||
embed_size = kwargs['embed_size'] | ||
|
||
# data | ||
download_imdb() | ||
train_data, test_data = read_imdb('train'), read_imdb('test') | ||
vocab = get_vocab_imdb(train_data) | ||
|
||
train_set = gluon.data.ArrayDataset(*preprocess_imdb(train_data, vocab)) | ||
test_set = gluon.data.ArrayDataset(*preprocess_imdb(test_data, vocab)) | ||
train_dataloader = gluon.data.DataLoader(train_set, batch_size, shuffle=True) | ||
test_dataloader = gluon.data.DataLoader(test_set, batch_size) | ||
|
||
# Model | ||
num_hiddens, num_layers = 100, 2 | ||
net = BiRNN(vocab, embed_size, num_hiddens, num_layers) | ||
net.initialize(mx.init.Xavier(), ctx=ctx) | ||
|
||
glove_embedding = text.embedding.create( | ||
'glove', pretrained_file_name='glove.6B.100d.txt', vocabulary=vocab) | ||
|
||
net.embedding.weight.set_data(glove_embedding.idx_to_vec) | ||
net.embedding.collect_params().setattr('grad_req', 'null') | ||
|
||
est = run(net, train_dataloader, test_dataloader, **kwargs) | ||
|
||
assert est.train_stats['train_accuracy'][num_epochs - 1] > 0.70 | ||
|
||
|
||
parser = argparse.ArgumentParser(description='test gluon estimator') | ||
parser.add_argument('--type', type=str, default='cpu') | ||
opt = parser.parse_args() | ||
kwargs = { | ||
'batch_size': 64, | ||
'lr': 0.01, | ||
'embed_size': 100 | ||
} | ||
|
||
if opt.type == 'cpu': | ||
kwargs['ctx'] = mx.cpu() | ||
kwargs['epochs'] = 1 | ||
test_estimator_cpu(**kwargs) | ||
elif opt.type == 'gpu': | ||
kwargs['ctx'] = mx.gpu() | ||
kwargs['epochs'] = 5 | ||
test_estimator_gpu(**kwargs) | ||
else: | ||
raise RuntimeError("Unknown test type") |