Skip to content

Commit

Permalink
Add static quantization for EMBEDDING_LOOKUP in Quantizer
Browse files Browse the repository at this point in the history
PiperOrigin-RevId: 696531816
  • Loading branch information
v-dziuba authored and copybara-github committed Nov 14, 2024
1 parent ef8ea08 commit 6316949
Show file tree
Hide file tree
Showing 10 changed files with 254 additions and 6 deletions.
2 changes: 2 additions & 0 deletions ai_edge_quantizer/algorithm_manager.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,6 +89,7 @@ class AlgorithmName(str, enum.Enum):
_TFLOpName.STRIDED_SLICE,
_TFLOpName.SPLIT,
_TFLOpName.LOGISTIC, # Sigmoid
_TFLOpName.SLICE,
),
(
naive_min_max_quantize.materialize_input,
Expand All @@ -114,6 +115,7 @@ class AlgorithmName(str, enum.Enum):
naive_min_max_quantize.materialize_strided_slice,
naive_min_max_quantize.materialize_split,
naive_min_max_quantize.materialize_softmax_and_logistic,
naive_min_max_quantize.materialize_slice,
),
):
register_quantized_op(
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -307,6 +307,24 @@ def _are_weights_too_small(
)


def materialize_slice(
op_info: qtyping.OpInfo,
graph_info: qtyping.GraphInfo,
tensor_name_to_qsv: dict[str, Any],
) -> list[qtyping.TensorTransformationParams]:
"""Materialize tensors in tfl.slice."""
return utils.materialize_standard_op(
op_info,
graph_info,
tensor_name_to_qsv,
constraint=_OpQuantConstraint.SAME_AS_INPUT_SCALE,
inputs_to_ignore=[
1,
2,
], # Begin and size indices do not need to be quantized.
)


def materialize_fc_conv(
op_info: qtyping.OpInfo,
graph_info: qtyping.GraphInfo,
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,110 @@
# Copyright 2024 The AI Edge Quantizer Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

import os

from absl.testing import parameterized
import numpy as np

from tensorflow.python.platform import googletest
from ai_edge_quantizer import qtyping
from ai_edge_quantizer.algorithms.uniform_quantize import naive_min_max_quantize
from ai_edge_quantizer.algorithms.uniform_quantize.naive_min_max_quantize_op_tests import test_utils as naive_min_max_test_utils
from ai_edge_quantizer.utils import test_utils
from ai_edge_quantizer.utils import tfl_flatbuffer_utils

_TFLOpName = qtyping.TFLOperationName
_ComputePrecision = qtyping.ComputePrecision
_TensorQuantConfig = qtyping.TensorQuantizationConfig
_QuantTransformation = qtyping.QuantTransformation
_OpTestInfo = naive_min_max_test_utils.OpTestInfo

_TEST_DATA_PREFIX_PATH = test_utils.get_path_to_datafile(
"../../../tests/models"
)
_DEFAULT_ACTIVATION_QUANT_SETTING = (
naive_min_max_test_utils.DEFAULT_ACTIVATION_QUANT_SETTING
)
_DEFAULT_WEIGHT_QUANT_SETTING = (
naive_min_max_test_utils.DEFAULT_WEIGHT_QUANT_SETTING
)


class SliceTest(naive_min_max_test_utils.NaiveMinMaxQuantizeTest):

def setUp(self):
super().setUp()
np.random.seed(666)
self._test_model_path = os.path.join(
_TEST_DATA_PREFIX_PATH, "single_slice.tflite"
)
self._op_test_info = _OpTestInfo(
test_model=tfl_flatbuffer_utils.read_model(self._test_model_path),
op_tensor_names={},
input_range=(np.array([[-10]]), np.array([[8]])),
output_range=(np.array([[10]]), np.array([[88]])),
)
# The test model has one subgraph for now.
self._graph_info = qtyping.GraphInfo(
subgraph_tensors=self._op_test_info.test_model.subgraphs[0].tensors,
buffers=self._op_test_info.test_model.buffers,
)

@parameterized.parameters(
(_DEFAULT_ACTIVATION_QUANT_SETTING),
(
_TensorQuantConfig(
num_bits=16,
symmetric=True,
granularity=qtyping.QuantGranularity.TENSORWISE,
)
),
)
def test_materialize_slice_succeeds(self, activation_tensor_config):
op_quant_config = qtyping.OpQuantizationConfig(
activation_tensor_config=activation_tensor_config,
weight_tensor_config=_DEFAULT_WEIGHT_QUANT_SETTING,
compute_precision=_ComputePrecision.INTEGER, # SRQ.
)
# Read from Model Explorer.
subgraph0 = self._op_test_info.test_model.subgraphs[0]
subgraph_op_id = 0
op = subgraph0.operators[subgraph_op_id]
op_info = qtyping.OpInfo(
op=op,
op_name=qtyping.TFLOperationName.SLICE,
subgraph_op_index=subgraph_op_id,
op_quant_config=op_quant_config,
)

# Test settings.
op_tensor_names = {}
op_tensor_names["input"] = "slice_input_tensor:0"
op_tensor_names["input2"] = "slice_begin:0"
op_tensor_names["input3"] = "slice_size:0"
op_tensor_names["output"] = "PartitionedCall:0"
self._op_test_info.op_tensor_names = op_tensor_names
self._test_no_weights_op(
op_info,
self._graph_info,
self._op_test_info,
naive_min_max_quantize.materialize_slice,
same_input_output_params=True,
inputs_to_ignore=[1, 2],
)


if __name__ == "__main__":
googletest.main()
2 changes: 1 addition & 1 deletion ai_edge_quantizer/calibrator_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -290,7 +290,7 @@ def test_toy_gemma2_calibration_success(self):
self._toy_gemma2_calibration_dataset,
model_recipe_manager=recipe_mngr,
)
self.assertLen(calib.get_model_qsvs(), 260)
self.assertGreater(len(calib.get_model_qsvs()), 260)


if __name__ == "__main__":
Expand Down
8 changes: 6 additions & 2 deletions ai_edge_quantizer/default_policy.py
Original file line number Diff line number Diff line change
Expand Up @@ -163,7 +163,9 @@
"TANH",
"TRANSPOSE",
"INPUT",
"OUTPUT"
"OUTPUT",
"SLICE",
"EMBEDDING_LOOKUP"
],
"static_wi8_ai8": [
"ADD",
Expand All @@ -187,7 +189,9 @@
"TANH",
"TRANSPOSE",
"INPUT",
"OUTPUT"
"OUTPUT",
"SLICE",
"EMBEDDING_LOOKUP"
],
"static_wi4_ai8": ["FULLY_CONNECTED", "CONV_2D", "INPUT", "OUTPUT"],
"static_wi4_ai16": ["FULLY_CONNECTED", "CONV_2D", "INPUT", "OUTPUT"],
Expand Down
1 change: 1 addition & 0 deletions ai_edge_quantizer/qtyping.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,7 @@ class TFLOperationName(str, enum.Enum):
STRIDED_SLICE = 'STRIDED_SLICE'
SPLIT = 'SPLIT'
LOGISTIC = 'LOGISTIC'
SLICE = 'SLICE'


class QuantizeMode(enum.Enum):
Expand Down
18 changes: 15 additions & 3 deletions ai_edge_quantizer/tests/end_to_end_tests/embedding_lookup_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,9 +34,7 @@
def _get_dummy_data(num_samples):
data = []
for _ in range(num_samples):
data.append(
{'inputs': _RNG.uniform(size=(1,)).astype(np.int32)}
)
data.append({'inputs': _RNG.uniform(size=(1,)).astype(np.int32)})
return data


Expand Down Expand Up @@ -107,6 +105,20 @@ def test_embedding_lookup_model_fp16_weight_only(self):
# output_tolerance=1e-5,
# )

@parameterized.parameters(
'../../recipes/default_a8w8_recipe.json',
'../../recipes/default_a16w8_recipe.json',
)
def test_embedding_lookup_model_full_integer(self, recipe_path):
calibration_result = {
'Identity_1': {'min': -2.0, 'max': 2.0},
}
recipe_path = test_utils.get_path_to_datafile(recipe_path)
self._quantizer.load_quantization_recipe(recipe_path)
self.assertTrue(self._quantizer.need_calibration)
quant_result = self._quantizer.quantize(calibration_result)
self.assertLess(len(quant_result.quantized_model), 2000)

# def _check_comparion_result(
# self,
# comparion_result,
Expand Down
100 changes: 100 additions & 0 deletions ai_edge_quantizer/tests/end_to_end_tests/slice_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,100 @@
# Copyright 2024 The AI Edge Quantizer Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""E2E tests for the quantizer for model with slice."""

from absl.testing import parameterized
import numpy as np

from tensorflow.python.platform import googletest
from ai_edge_quantizer import qtyping
from ai_edge_quantizer import quantizer
from ai_edge_quantizer.utils import test_utils

_OpExecutionMode = qtyping.OpExecutionMode
_OpName = qtyping.TFLOperationName
_TensorQuantConfig = qtyping.TensorQuantizationConfig
_OpQuantConfig = qtyping.OpQuantizationConfig

_RNG = np.random.default_rng(66)


def _get_dummy_data(num_samples):
data = []
for _ in range(num_samples):
data.append({
'input_tensor': _RNG.uniform(size=(32, 24, 32)).astype(np.float32),
'begin': np.array([1, 0, 0], dtype=np.int32),
'size': np.array([16, 8, 16], dtype=np.int32),
})
return data


def _get_calibration_data(num_samples: int = 64):
calibration_samples = _get_dummy_data(num_samples)
calibration_data = {'slice': calibration_samples}
return calibration_data


def _get_test_data(num_samples: int = 8):
return _get_calibration_data(num_samples)


class SliceTest(parameterized.TestCase):

def _custom_setup(self, test_model_file):
super().setUp()
self.float_model_path = test_utils.get_path_to_datafile(
f'../models/{test_model_file}'
)
self._quantizer = quantizer.Quantizer(self.float_model_path)

@parameterized.parameters(
'../../recipes/default_a8w8_recipe.json',
'../../recipes/default_a16w8_recipe.json',
)
def test_slice_model_full_integer(self, recipe_path):
self._custom_setup('single_slice.tflite')
recipe_path = test_utils.get_path_to_datafile(recipe_path)
self._quantizer.load_quantization_recipe(recipe_path)
self.assertTrue(self._quantizer.need_calibration)
calibration_result = self._quantizer.calibrate(_get_calibration_data())
_ = self._quantizer.quantize(calibration_result)
# Skip model size check because the quantized model doesn't decrease as
# there are no weights in the model file.

comparison_result = self._quantizer.validate(
error_metrics='mse', test_data=_get_test_data(num_samples=1)
)
self._check_comparison_result(
comparison_result,
output_tolerance=1e-4,
)

# TODO: b/345503484 - Check weight tensor type of the quantized model.
def _check_comparison_result(
self,
comparison_result,
output_tolerance,
):
# TODO: b/357959309 - Use comparison result directly for testing.
comparison_result = comparison_result.get_all_tensor_results()
# Check final output.
output_mse = comparison_result['PartitionedCall:0']
self.assertLess(output_mse, output_tolerance)


if __name__ == '__main__':
googletest.main()
Binary file not shown.
1 change: 1 addition & 0 deletions ai_edge_quantizer/utils/tfl_flatbuffer_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,7 @@
_TFLOpName.STRIDED_SLICE: schema_py_generated.BuiltinOperator.STRIDED_SLICE,
_TFLOpName.SPLIT: schema_py_generated.BuiltinOperator.SPLIT,
_TFLOpName.LOGISTIC: schema_py_generated.BuiltinOperator.LOGISTIC,
_TFLOpName.SLICE: schema_py_generated.BuiltinOperator.SLICE,
})

TFL_OP_CODE_TO_NAME = immutabledict.immutabledict(
Expand Down

0 comments on commit 6316949

Please sign in to comment.