-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add static quantization for SUM in Quantizer
PiperOrigin-RevId: 697818956
- Loading branch information
1 parent
3c79e16
commit 230c1fc
Showing
10 changed files
with
255 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
105 changes: 105 additions & 0 deletions
105
ai_edge_quantizer/algorithms/uniform_quantize/naive_min_max_quantize_op_tests/sum_test.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,105 @@ | ||
# Copyright 2024 The AI Edge Quantizer Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
|
||
import os | ||
|
||
from absl.testing import parameterized | ||
import numpy as np | ||
|
||
from tensorflow.python.platform import googletest | ||
from ai_edge_quantizer import qtyping | ||
from ai_edge_quantizer.algorithms.uniform_quantize import naive_min_max_quantize | ||
from ai_edge_quantizer.algorithms.uniform_quantize.naive_min_max_quantize_op_tests import test_utils as naive_min_max_test_utils | ||
from ai_edge_quantizer.utils import test_utils | ||
from ai_edge_quantizer.utils import tfl_flatbuffer_utils | ||
|
||
_TFLOpName = qtyping.TFLOperationName | ||
_ComputePrecision = qtyping.ComputePrecision | ||
_TensorQuantConfig = qtyping.TensorQuantizationConfig | ||
_QuantTransformation = qtyping.QuantTransformation | ||
_OpTestInfo = naive_min_max_test_utils.OpTestInfo | ||
|
||
_TEST_DATA_PREFIX_PATH = test_utils.get_path_to_datafile( | ||
"../../../tests/models" | ||
) | ||
_DEFAULT_WEIGHT_QUANT_SETTING = ( | ||
naive_min_max_test_utils.DEFAULT_WEIGHT_QUANT_SETTING | ||
) | ||
|
||
|
||
class SumTest(naive_min_max_test_utils.NaiveMinMaxQuantizeTest): | ||
|
||
def setUp(self): | ||
super().setUp() | ||
np.random.seed(666) | ||
self._test_model_path = os.path.join( | ||
_TEST_DATA_PREFIX_PATH, "single_sum.tflite" | ||
) | ||
self._op_test_info = _OpTestInfo( | ||
test_model=tfl_flatbuffer_utils.read_model(self._test_model_path), | ||
op_tensor_names={}, | ||
input_range=(np.array([[-10]]), np.array([[8]])), | ||
output_range=(np.array([[10]]), np.array([[88]])), | ||
) | ||
# The test model has one subgraph for now. | ||
self._graph_info = qtyping.GraphInfo( | ||
subgraph_tensors=self._op_test_info.test_model.subgraphs[0].tensors, | ||
buffers=self._op_test_info.test_model.buffers, | ||
) | ||
|
||
@parameterized.parameters( | ||
8, | ||
16, | ||
) | ||
def test_materialize_sum_succeeds(self, num_bits): | ||
activation_tensor_config = _TensorQuantConfig( | ||
num_bits=num_bits, | ||
symmetric=True, | ||
granularity=qtyping.QuantGranularity.TENSORWISE, | ||
) | ||
op_quant_config = qtyping.OpQuantizationConfig( | ||
activation_tensor_config=activation_tensor_config, | ||
weight_tensor_config=_DEFAULT_WEIGHT_QUANT_SETTING, | ||
compute_precision=_ComputePrecision.INTEGER, # SRQ. | ||
) | ||
# Read from Model Explorer. | ||
subgraph0 = self._op_test_info.test_model.subgraphs[0] | ||
subgraph_op_id = 0 | ||
op = subgraph0.operators[subgraph_op_id] | ||
op_info = qtyping.OpInfo( | ||
op=op, | ||
op_name=qtyping.TFLOperationName.SUM, | ||
subgraph_op_index=subgraph_op_id, | ||
op_quant_config=op_quant_config, | ||
) | ||
|
||
# Test settings. | ||
op_tensor_names = {} | ||
op_tensor_names["input"] = "serving_default_input_1:0" | ||
op_tensor_names["input2"] = "model/tf.math.reduce_sum/Sum/reduction_indices" | ||
op_tensor_names["output"] = "PartitionedCall:0" | ||
self._op_test_info.op_tensor_names = op_tensor_names | ||
self._test_no_weights_op( | ||
op_info, | ||
self._graph_info, | ||
self._op_test_info, | ||
naive_min_max_quantize.materialize_sum, | ||
same_input_output_params=True, | ||
inputs_to_ignore=[1], # Ignore axis tensor. | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
googletest.main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,124 @@ | ||
# Copyright 2024 The AI Edge Quantizer Authors. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# ============================================================================== | ||
|
||
"""E2E tests for the quantizer for model with transpose.""" | ||
|
||
from typing import Any | ||
|
||
from absl.testing import parameterized | ||
import numpy as np | ||
|
||
from tensorflow.python.platform import googletest | ||
from ai_edge_quantizer import qtyping | ||
from ai_edge_quantizer import quantizer | ||
from ai_edge_quantizer.utils import test_utils | ||
from ai_edge_quantizer.utils import tfl_flatbuffer_utils | ||
from ai_edge_quantizer.utils import tfl_interpreter_utils | ||
|
||
_OpExecutionMode = qtyping.OpExecutionMode | ||
_OpName = qtyping.TFLOperationName | ||
_TensorQuantConfig = qtyping.TensorQuantizationConfig | ||
_OpQuantConfig = qtyping.OpQuantizationConfig | ||
|
||
_RNG = np.random.default_rng(66) | ||
|
||
|
||
def _get_dummy_data( | ||
num_samples: int, dtype: np.dtype = np.float32 | ||
) -> list[dict[str, Any]]: | ||
data = [] | ||
for _ in range(num_samples): | ||
data.append({'input_1': _RNG.uniform(size=(2, 3)).astype(dtype)}) | ||
return data | ||
|
||
|
||
def _get_calibration_data( | ||
num_samples: int = 128, dtype: np.dtype = np.float32 | ||
) -> list[dict[str, Any]]: | ||
calibration_samples = _get_dummy_data(num_samples, dtype) | ||
calibration_data = { | ||
tfl_interpreter_utils.DEFAULT_SIGNATURE_KEY: calibration_samples, | ||
} | ||
return calibration_data | ||
|
||
|
||
def _get_test_data( | ||
num_samples: int = 8, dtype: np.dtype = np.float32 | ||
) -> list[dict[str, Any]]: | ||
return _get_calibration_data(num_samples, dtype) | ||
|
||
|
||
class SumTest(parameterized.TestCase): | ||
|
||
def setUp(self): | ||
super().setUp() | ||
self.float_model_path = test_utils.get_path_to_datafile( | ||
'../models/single_sum.tflite' | ||
) | ||
self._quantizer = quantizer.Quantizer(self.float_model_path) | ||
|
||
@parameterized.named_parameters( | ||
dict( | ||
testcase_name='int8_quantized', | ||
recipe_path='../../recipes/default_a8w8_recipe.json', | ||
tensor_type=9, | ||
tol=1e-4, | ||
), | ||
dict( | ||
testcase_name='int16_quantized', | ||
recipe_path='../../recipes/default_a16w8_recipe.json', | ||
tensor_type=7, | ||
tol=2.5, # TODO(b/379757798): Update tolerance after bug is fixed. | ||
), | ||
) | ||
def test_sum_model_full_integer(self, recipe_path, tensor_type, tol): | ||
recipe_path = test_utils.get_path_to_datafile(recipe_path) | ||
self._quantizer.load_quantization_recipe(recipe_path) | ||
self.assertTrue(self._quantizer.need_calibration) | ||
|
||
data = _get_calibration_data() | ||
calibration_result = self._quantizer.calibrate(data) | ||
|
||
quantization_result = self._quantizer.quantize(calibration_result) | ||
|
||
# Check input/output tensor type. | ||
quantized_model = tfl_flatbuffer_utils.read_model( | ||
quantization_result.quantized_model | ||
) | ||
self.assertLen(quantized_model.subgraphs, 1) | ||
subgraph = quantized_model.subgraphs[0] | ||
subgraph_tensors = subgraph.tensors | ||
self.assertLen(subgraph.inputs, 1) | ||
input_tensor = subgraph_tensors[subgraph.inputs[0]] | ||
output_tensor = subgraph_tensors[subgraph.outputs[0]] | ||
# See schema_py_generated.py for type code. | ||
self.assertEqual(input_tensor.type, tensor_type) | ||
self.assertEqual(output_tensor.type, tensor_type) | ||
|
||
comparison_result = self._quantizer.validate( | ||
error_metrics='mse', | ||
test_data=_get_test_data(num_samples=1), | ||
) | ||
self._check_comparison_result(comparison_result, output_tolerance=tol) | ||
|
||
def _check_comparison_result(self, comparison_result, output_tolerance): | ||
# TODO: b/357959309 - Use comparison result directly for testing. | ||
comparison_result = comparison_result.get_all_tensor_results() | ||
output_mse = comparison_result['PartitionedCall:0'] | ||
self.assertLess(output_mse, output_tolerance) | ||
|
||
|
||
if __name__ == '__main__': | ||
googletest.main() |
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters