NOTICE: I may not update or maintain this repository actively, as I noticed that recent HF LLMs have usually implemented their chat templates in the tokenizer_config.json
file. I am glad about this common practice and it will definitely facilitate out-of-box use of these powerful models.
This is a repository that includes proper chat templates (or input formats) for instruction-tuned large language models (LLMs), to support transformers
's chat_template
feature. If you are interested to include more chat templates, feel free to open a pull request
If you find this repo useful, please kindly cite it:
@misc{zheng-2024-chat-templates,
author = {Zheng, Chujie},
title = {Chat Templates for HuggingFace Large Language Models},
year = {2024},
howpublished = {\url{https://github.com/chujiezheng/chat_templates}}
}
- [11/2024] Added support for Meta's Llama-3.2 models
- [10/2024] Added support for IBM's Granite-3.0 models
- [07/2024] Added support for Meta's Llama-3.1 models
- [06/2024] Added support for Google's Gemma-2 models
- [05/2024] Added support for Nvidia's ChatQA models
- [04/2024] Added support for Microsoft's Phi-3 models
- [04/2024] Added support for Meta's Llama-3 models
- [02/2024] Added support for Google's Gemma models
- [02/2024] Added usage explanation for generation_configs
- [01/2024] Added support for Alibaba's Qwen2 models
-
chat_templates
contains the jinja files of collected chat templates, which can be directly replaced in the Huggingface tokenizers -
generation_configs
contains the corresponding json configs used for controlling the ending of response generations. Specially, thestop_token_ids
should be directly passed into thegenerate
method by theeos_token_id
argument
Important NOTE: As mentioned in this issue, the messages
should contain at least one user message. It is strongly not recommented to pass only the system message, as there may result in unexpected outputs (because the models are not trained in this way).
Example 1: Meta-Llama-3-8B-Instruct
This example may check if the jinja file is correctly implemented.
from transformers import AutoTokenizer
toker = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", token="YOUR_OWN_TOKEN")
messages = [
{'role': 'system', 'content': 'This is a system prompt.'},
{'role': 'user', 'content': 'This is the first user input.'},
{'role': 'assistant', 'content': 'This is the first assistant response.'},
{'role': 'user', 'content': 'This is the second user input.'},
]
print('###### Default (yet Correct) Chat Template ######')
print(toker.apply_chat_template(messages, tokenize=False, add_generation_prompt=True))
print('###### Corrected Chat Template ######')
chat_template = open('./chat_templates/llama-3-instruct.jinja').read()
chat_template = chat_template.replace(' ', '').replace('\n', '')
toker.chat_template = chat_template
print(toker.apply_chat_template(messages, tokenize=False, add_generation_prompt=True))
Expected output:
###### Default (yet Correct) Chat Template ######
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
This is a system prompt.<|eot_id|><|start_header_id|>user<|end_header_id|>
This is the first user input.<|eot_id|><|start_header_id|>assistant<|end_header_id|>
This is the first assistant response.<|eot_id|><|start_header_id|>user<|end_header_id|>
This is the second user input.<|eot_id|><|start_header_id|>assistant<|end_header_id|>
###### Corrected Chat Template ######
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
This is a system prompt.<|eot_id|><|start_header_id|>user<|end_header_id|>
This is the first user input.<|eot_id|><|start_header_id|>assistant<|end_header_id|>
This is the first assistant response.<|eot_id|><|start_header_id|>user<|end_header_id|>
This is the second user input.<|eot_id|><|start_header_id|>assistant<|end_header_id|>
Example 2: Mistral-7B-Instruct-v0.2
For mistral-instruct
(also gemma-it
), it does not natively support the system
message, so passing the system
message would raise error.
from transformers import AutoTokenizer
toker = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.2")
messages = [
{'role': 'system', 'content': 'This is a system prompt.'},
{'role': 'user', 'content': 'This is the first user input.'},
{'role': 'assistant', 'content': 'This is the first assistant response.'},
{'role': 'user', 'content': 'This is the second user input.'},
]
print('###### Default (but Improper) Chat Template ######')
# raising error
#print(toker.apply_chat_template(messages, tokenize=False, add_generation_prompt=True))
print('###### Corrected Chat Template ######')
chat_template = open('./chat_templates/mistral-instruct.jinja').read()
chat_template = chat_template.replace(' ', '').replace('\n', '')
toker.chat_template = chat_template
print(toker.apply_chat_template(messages, tokenize=False, add_generation_prompt=True))
Expected output:
###### Default (but Error-Raising) Chat Template ######
jinja2.exceptions.TemplateError: Conversation roles must alternate user/assistant/user/assistant/...
###### Corrected Chat Template ######
<s>[INST] This is a system prompt.
This is the first user input. [/INST] This is the first assistant response. </s>[INST] This is the second user input. [/INST]
Example 3: vicuna-7b-v1.5
NOTE: In fast-chat, vicuna
does not add linebreaks between roles' messages. But I found that adding linebreaks leads to a bit better performance (especially for the v1.5 version).
Also, I found vicuna-7/13/33b-v1.3
may not work well when given a system message different from its default one. So I would recommend to use vicuna-7/13b-v1.5
instead.
from transformers import AutoTokenizer
toker = AutoTokenizer.from_pretrained("lmsys/vicuna-7b-v1.5")
messages = [
{'role': 'system', 'content': 'This is a system prompt.'},
{'role': 'user', 'content': 'This is the first user input.'},
{'role': 'assistant', 'content': 'This is the first assistant response.'},
{'role': 'user', 'content': 'This is the second user input.'},
]
print('###### Default (but Improper) Chat Template ######')
print(toker.apply_chat_template(messages, tokenize=False, add_generation_prompt=True))
print('###### Corrected Chat Template ######')
chat_template = open('./chat_templates/vicuna.jinja').read()
chat_template = chat_template.replace(' ', '').replace('\n', '')
toker.chat_template = chat_template
print(toker.apply_chat_template(messages, tokenize=False, add_generation_prompt=True))
Expected output:
###### Default (but Improper) Chat Template ######
<s>[INST] <<SYS>>
This is a system prompt.
<</SYS>>
This is the first user input. [/INST] This is the first assistant response. </s><s>[INST] This is the second user input. [/INST]
###### Corrected Chat Template ######
<s>This is a system prompt.
USER: This is the first user input.
ASSISTANT: This is the first assistant response.</s>
USER: This is the second user input.
ASSISTANT:
NOTE: The listed models are not inclusive and also include other-sized ones in the same model family
granite-3.0-instruct
- Models:
ibm-granite/granite-3.0-2b-instruct
,ibm-granite/granite-3.0-8b-instruct
,ibm-granite/granite-3.0-1b-a400m-instruct
,ibm-granite/granite-3.0-3b-a800m-instruct
- Chat template:
chat_templates/granite-3.0-instruct.jinja
- Generation config:
generation_configs/granite-3.0-instruct.json
- Reference: https://huggingface.co/ibm-granite/granite-3.0-8b-instruct/blob/main/tokenizer_config.json#L188
Llama-3.2-Instruct
- Models:
meta-llama/Meta-Llama-3.2-1B-Instruct
,meta-llama/Meta-Llama-3.2-3B-Instruct
- Chat template:
chat_templates/llama-3-instruct.jinja
- Generation config:
generation_configs/llama-3.1-instruct.json
- Reference: https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct/blob/main/tokenizer_config.json#L2053
Llama-3.1-Instruct
- Models:
meta-llama/Meta-Llama-3.1-8B-Instruct
,meta-llama/Meta-Llama-3.1-405B-Instruct-FP8
- Chat template:
chat_templates/llama-3-instruct.jinja
- Generation config:
generation_configs/llama-3.1-instruct.json
- Reference: https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct/blob/main/tokenizer_config.json#L2053
Llama-3-Instruct
- Models:
meta-llama/Meta-Llama-3-8B-Instruct
- Chat template:
chat_templates/llama-3-instruct.jinja
- Generation config:
generation_configs/llama-3-instruct.json
- Reference: https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct/blob/main/tokenizer_config.json#L2053
Llama-2-Chat, CodeLlama-Instruct
- Models:
meta-llama/Llama-2-7b-chat-hf
,meta-llama/CodeLlama-7b-Instruct-hf
- Chat template:
chat_templates/llama-2-chat.jinja
- Generation config:
generation_configs/llama-2-chat.json
- Reference: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf/blob/main/tokenizer_config.json#L12
Qwen2-Instruct, Qwen1.5-Chat
- Models:
Qwen/Qwen2-7B-Instruct
,Qwen/Qwen1.5-7B-Chat
- Chat template:
chat_templates/chatml.jinja
- Generation config:
generation_configs/qwen2-instruct.json
- Reference: https://huggingface.co/Qwen/Qwen2-72B-Instruct/blob/main/tokenizer_config.json#L31
Mistral-Instruct
- Models:
mistralai/Mistral-7B-Instruct-v0.3
,mistralai/Mixtral-8x7B-Instruct-v0.1
- Chat template:
chat_templates/mistral-instruct.jinja
- Generation config:
generation_configs/mistral-instruct.json
- Reference: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3/blob/main/tokenizer_config.json#L42
- Comment: System message is acceptable by prepending it before the first user input
Phi-3-Instruct
- Models:
microsoft/Phi-3-mini-4k-instruct
,microsoft/Phi-3-small-8k-instruct
- Chat template:
chat_templates/phi-3.jinja
,chat_templates/phi-3-small.jinja
- Generation config:
generation_configs/phi-3.json
,generation_configs/phi-3-small.json
- Reference: https://huggingface.co/microsoft/Phi-3-mini-128k-instruct/blob/main/tokenizer_config.json#L338
- Note:
Phi-3-mini/medium
andPhi-3-small
adopt different configs
Yi-1.5-Chat, Yi-Chat
- Models:
01-ai/Yi-1.5-6B-Chat
,01-ai/Yi-6B-Chat
- Chat template:
chat_templates/chatml.jinja
- Generation config:
generation_configs/yi-chat.json
- Reference: https://huggingface.co/01-ai/Yi-6B-Chat/blob/main/tokenizer_config.json#L60
gemma-it, gemma-2-it
- Models:
google/gemma-7b-it
,google/gemma-2-9b-it
- Chat template:
chat_templates/gemma-it.jinja
- Generation config:
generation_configs/gemma-it.json
- Reference: https://huggingface.co/google/gemma-7b-it/blob/main/tokenizer_config.json#L1507
- Comment: System message is acceptable
Llama3-ChatQA-1.5
- Models:
nvidia/Llama3-ChatQA-1.5-8B
- Chat template:
chat_templates/chatqa.jinja
- Generation config:
generation_configs/chatqa.json
- Reference: https://huggingface.co/nvidia/Llama3-ChatQA-1.5-8B#when-context-is-available
- Comment: Context message is acceptable
openchat-3.5, Starling-LM
- Models:
openchat/openchat_3.5
,berkeley-nest/Starling-LM-7B-alpha
- Chat template:
chat_templates/openchat-3.5.jinja
- Generation config:
generation_configs/openchat-3.5.json
- Reference: https://huggingface.co/openchat/openchat_3.5/blob/main/tokenizer_config.json#L51
zephyr
- Models:
zephyr-7b-alpha
- Chat template:
chat_templates/zephyr.jinja
- Generation config:
generation_configs/zephyr.json
- Reference: https://huggingface.co/HuggingFaceH4/zephyr-7b-beta/blob/main/tokenizer_config.json#L34
vicuna
- Models:
vicuna-7b-v1.5
,vicuna-7b-v1.3
- Chat template:
chat_templates/vicuna.jinja
- Generation config:
generation_configs/vicuna.json
- Reference: https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md#prompt-template
Orca-2
- Models:
microsoft/Orca-2-7b
- Chat template:
chat_templates/chatml.jinja
- Generation config:
generation_configs/orca-2.json
- Reference: https://huggingface.co/microsoft/Orca-2-7b
falcon-instruct
- Models:
tiiuae/falcon-7b-instruct
- Chat template:
chat_templates/falcon-instruct.jinja
- Reference: https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md#prompt-template
SOLAR-Instruct
- Models:
upstage/SOLAR-10.7B-Instruct-v1.0
- Chat template:
chat_templates/solar-instruct.jinja
- Generation config:
generation_configs/solar-instruct.json
- Reference: https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0/blob/main/tokenizer_config.json#L31
Alpaca
- Models:
tatsu-lab/alpaca-7b-wdiff
- Chat template:
chat_templates/alpaca.jinja
- Generation config:
generation_configs/alpaca.json
- Reference: https://github.com/tatsu-lab/stanford_alpaca
AmberChat
- Models:
LLM360/AmberChat
,LLM360/AmberSafe
- Chat template:
chat_templates/amberchat.jinja
- Generation config:
generation_configs/amberchat.json
- Reference: https://huggingface.co/LLM360/AmberChat
saiga
- Models:
IlyaGusev/saiga_mistral_7b_lora
- Chat template:
chat_templates/saiga.jinja
- Generation config:
generation_configs/saiga.json
- Reference: https://huggingface.co/IlyaGusev/saiga_mistral_7b_lora#saigamistral-7b-russian-mistral-based-chatbot
- Comment: A series of Russian models