Paper: Mo Zhou, Vishal M. Patel, Enhancing Adversarial Robustness for Deep Metric Learning, CVPR, 2022
PDF: [OpenAccess]
Code: https://github.com/cdluminate/robrank
Poster: [PDF Version] [SVG Source] [PNG Version]
Slides: [Full-length Presentation Version] [Single-page Version]
Video: [Bilibili (English)] [YouTube (English)] [Bilibili (Chinese)] [YouTube (Chinese)]
Our code is based on the public code of the following paper: "Adversarial Attack and Defense in Deep Ranking" arXiv: 2106.03614.
-
download and prepare datasets as described in
README.md
. -
generate python configurations for the models by running
bash tools/autogen.bash
. -
train our defensive models on CUB, CARS, SOP datasets:
=== Command Table ===
---------------------------------------------------------------------------------
DATASET | METHOD | COMMAND
---------------------------------------------------------------------------------
CUB | HM[S,g_LGA] | python3 bin/train.py -C cub:rres18ghmetsm:ptripletN
CARS | HM[S,g_LGA] | python3 bin/train.py -C cars:rres18ghmetsm:ptripletN
SOP | HM[S,g_LGA] | python3 bin/train.py -C sop:rres18ghmetsm:ptripletN
---------------------------------------------------------------------------------
CUB | HM[S,g_LGA]&ICS | python3 bin/train.py -C cub:rres18ghmetsmi:ptripletN
CARS | HM[S,g_LGA]&ICS | python3 bin/train.py -C cars:rres18ghmetsmi:ptripletN
SOP | HM[S,g_LGA]&ICS | python3 bin/train.py -C sop:rres18ghmetsmi:ptripletN
---------------------------------------------------------------------------------
=== Model Config Grammar ===
To simplify programming with various possible model combinations, the model
configs are passed altogether to the -C parameter for bin/train.py, with
colon being the separator. It follows the following grammar:
<dataset>:<model>:<loss_function>
Please read https://github.com/cdluminate/robrank/blob/main/README.md first
for the details. Here we shall cover the additional models in the CVPR2022
paper. Take ResNet-18 as an example. The backbone is named `rres18` for deep
metric learning. Then by adding different suffixes, we will use different
defense methods in the paper. It follows the following grammar:
<backbone><if_gradual_adversary><if_fix_anchor><distance>
<source_hardness><destination_hardness><if_intra_structure>
where:
backbone e.g. rres18
if_gradual_adversary in {g,} for (yes, no)
if_fix_anchor in {rh,hm} for (yes, no)
distance in {kl,l2,et} for (kl-divergence,euclidean-distance,thresholded-euclidean)
source_hardness or destination_hardness in {r,m,s,d,h}
if_intra_structure in {i,} for (yes, no)
For example, if we want the ResNet-18 (rres18) with gradual adversary (g), no
fixed anchor (hm), thresholded-euclidean distance (et), softhard source hardness (s),
semihard destination hardness (m), with intra-class loss (i), we combine the corresponding
abbreviations into (rres18ghmetsmi). Please refer the following lookup table.
---------------------------------------------------------------------------------
NAME | ABBR | EXAMPLE
---------------------------------------------------------------------------------
Random triplet sampling | R,r | rres18ghmet(r)m
Semihard triplet sampling | M,m | rres18ghmetr(m)
Softhard triplet sampling | S,s | rres18ghmet(s)m
Distance triplet sampling | D,d | rres18ghmet(d)m
Hardest triplet sampling | H,h | rres18ghmet(h)m
---------------------------------------------------------------------------------
You may read robrank/models/autogen/autogen.py for more detail on the combinations.
Unfortunately such flexibility resulted in 1800 possible model configurations,
where most of them are not working and not used in by the paper.
Meh... I understand that the code can be improved to simplify this, because there
are too many unused leftover code from early exploration of this work.
- evaluate these models following the description in
README.md
@InProceedings{robdml,
author = {Zhou, Mo and Patel, Vishal M.},
title = {Enhancing Adversarial Robustness for Deep Metric Learning},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {15325-15334}
}
or if you prefer the arxiv version:
@article{robdml-arxiv,
author={Zhou, Mo and Patel, Vishal M.},
title={Enhancing Adversarial Robustness for Deep Metric Learning},
journal={arXiv preprint arXiv:2203.01439},
year={2022}
}
Apache-2.0