This repository contains code for the paper "Distribution Aligning Refinery of Pseudo-label for Imbalanced Semi-supervised Learning" by Jaehyung Kim, Youngbum Hur, Sejun Park, Eunho Yang, Sung Ju Hwang, and Jinwoo Shin.
python3
pytorch == 1.1.0
torchvision
progress
scipy
randAugment (Pytorch re-implementation: https://github.com/ildoonet/pytorch-randaugment)
Please check out run.sh
for the scripts to run the baseline algorithms and ours (DARP).
Train a network with baseline algorithm, e.g., MixMatch on CIFAR-10
python train.py --gpu 0 --semi_method mix --dataset cifar10 --ratio 2 --num_max 1500 --imb_ratio_l 100 --imb_ratio_u 1 \
--epoch 500 --val-iteration 500
Applying DARP on the baseline algorithm
#python train.py --gpu 0 --darp --est --alpha 2 --warm 200 --semi_method mix --dataset cifar10 --ratio 2 --num_max 1500 --imb_ratio_l 100 --imb_ratio_u 1 \
--epoch 500 --val-iteration 500