JET employs Julia's type inference system to detect potential bugs and type instabilities.
Warning
Please note that due to JET's tight integration with the Julia compiler, the results
presented by JET can vary significantly depending on the version of Julia you are using.
Additionally, the implementation of the Base
module and standard libraries bundled with
Julia can also affect the results.
Moreover, the Julia compiler's plugin system is still unstable and its interface changes frequently, so each version of JET is compatible with only limited versions of Julia. The Julia package manager will automatically select and install the latest version of JET that is compatible with your Julia version. However, if you are using the nightly version of Julia, please note that a compatible version of JET may not have been released yet, and JET installed via the Julia package manager may not function properly.
See more commands, options and explanations in the documentation.
JET is a standard Julia package. So you can just install it via Julia's built-in package manager and use it just like any other package:
julia> using Pkg; Pkg.add("JET")
[ some output elided ]
julia> using JET
Type instabilities can be detected in function calls using the @report_opt
macro, which works similar to the @code_warntype
macro.
Note that, because JET relies on Julia's type inference, if a chain of inference is broken due to dynamic dispatch, then all downstream function calls will be unknown to the compiler, and so JET cannot analyze them.
julia> @report_opt foldl(+, Any[]; init=0)
═════ 2 possible errors found ═════
┌ kwcall(::@NamedTuple{init::Int64}, ::typeof(foldl), op::typeof(+), itr::Vector{Any}) @ Base ./reduce.jl:198
│┌ foldl(op::typeof(+), itr::Vector{Any}; kw::@Kwargs{init::Int64}) @ Base ./reduce.jl:198
││┌ kwcall(::@NamedTuple{init::Int64}, ::typeof(mapfoldl), f::typeof(identity), op::typeof(+), itr::Vector{Any}) @ Base ./reduce.jl:175
│││┌ mapfoldl(f::typeof(identity), op::typeof(+), itr::Vector{Any}; init::Int64) @ Base ./reduce.jl:175
││││┌ mapfoldl_impl(f::typeof(identity), op::typeof(+), nt::Int64, itr::Vector{Any}) @ Base ./reduce.jl:44
│││││┌ foldl_impl(op::Base.BottomRF{typeof(+)}, nt::Int64, itr::Vector{Any}) @ Base ./reduce.jl:48
││││││┌ _foldl_impl(op::Base.BottomRF{typeof(+)}, init::Int64, itr::Vector{Any}) @ Base ./reduce.jl:58
│││││││┌ (::Base.BottomRF{typeof(+)})(acc::Int64, x::Any) @ Base ./reduce.jl:86
││││││││ runtime dispatch detected: +(acc::Int64, x::Any)::Any
│││││││└────────────────────
││││││┌ _foldl_impl(op::Base.BottomRF{typeof(+)}, init::Int64, itr::Vector{Any}) @ Base ./reduce.jl:62
│││││││┌ (::Base.BottomRF{typeof(+)})(acc::Any, x::Any) @ Base ./reduce.jl:86
││││││││ runtime dispatch detected: +(acc::Any, x::Any)::Any
│││││││└────────────────────
This works best on type stable code, so use @report_opt
liberally before using @report_call
.
julia> @report_call foldl(+, Char[])
═════ 2 possible errors found ═════
┌ foldl(op::typeof(+), itr::Vector{Char}) @ Base ./reduce.jl:198
│┌ foldl(op::typeof(+), itr::Vector{Char}; kw::@Kwargs{}) @ Base ./reduce.jl:198
││┌ mapfoldl(f::typeof(identity), op::typeof(+), itr::Vector{Char}) @ Base ./reduce.jl:175
│││┌ mapfoldl(f::typeof(identity), op::typeof(+), itr::Vector{Char}; init::Base._InitialValue) @ Base ./reduce.jl:175
││││┌ mapfoldl_impl(f::typeof(identity), op::typeof(+), nt::Base._InitialValue, itr::Vector{Char}) @ Base ./reduce.jl:44
│││││┌ foldl_impl(op::Base.BottomRF{typeof(+)}, nt::Base._InitialValue, itr::Vector{Char}) @ Base ./reduce.jl:48
││││││┌ _foldl_impl(op::Base.BottomRF{typeof(+)}, init::Base._InitialValue, itr::Vector{Char}) @ Base ./reduce.jl:62
│││││││┌ (::Base.BottomRF{typeof(+)})(acc::Char, x::Char) @ Base ./reduce.jl:86
││││││││ no matching method found `+(::Char, ::Char)`: (op::Base.BottomRF{typeof(+)}).rf::typeof(+)(acc::Char, x::Char)
│││││││└────────────────────
│││││┌ foldl_impl(op::Base.BottomRF{typeof(+)}, nt::Base._InitialValue, itr::Vector{Char}) @ Base ./reduce.jl:49
││││││┌ reduce_empty_iter(op::Base.BottomRF{typeof(+)}, itr::Vector{Char}) @ Base ./reduce.jl:383
│││││││┌ reduce_empty_iter(op::Base.BottomRF{typeof(+)}, itr::Vector{Char}, ::Base.HasEltype) @ Base ./reduce.jl:384
││││││││┌ reduce_empty(op::Base.BottomRF{typeof(+)}, ::Type{Char}) @ Base ./reduce.jl:360
│││││││││┌ reduce_empty(::typeof(+), ::Type{Char}) @ Base ./reduce.jl:343
││││││││││ no matching method found `zero(::Type{Char})`: zero(T::Type{Char})
│││││││││└────────────────────
This looks for all method definitions and analyses function calls based on their signatures. Note that this is less accurate than @report_call
, because the actual input types cannot be known for generic methods.
julia> using Pkg; Pkg.activate(; temp=true, io=devnull); Pkg.add("AbstractTrees"; io=devnull);
julia> Pkg.status()
Status `/private/var/folders/xh/6zzly9vx71v05_y67nm_s9_c0000gn/T/jl_h07K2m/Project.toml`
[1520ce14] AbstractTrees v0.4.4
julia> report_package("AbstractTrees")
[ some output elided ]
═════ 7 possible errors found ═════
┌ isroot(root::Any, x::Any) @ AbstractTrees ~/.julia/packages/AbstractTrees/EUx8s/src/base.jl:102
│ no matching method found `parent(::Any, ::Any)`: AbstractTrees.parent(root::Any, x::Any)
└────────────────────
┌ AbstractTrees.IndexNode(tree::Any) @ AbstractTrees ~/.julia/packages/AbstractTrees/EUx8s/src/indexing.jl:117
│ no matching method found `rootindex(::Any)`: rootindex(tree::Any)
└────────────────────
┌ parent(idx::AbstractTrees.IndexNode) @ AbstractTrees ~/.julia/packages/AbstractTrees/EUx8s/src/indexing.jl:127
│ no matching method found `parentindex(::Any, ::Any)`: pidx = parentindex((idx::AbstractTrees.IndexNode).tree::Any, (idx::AbstractTrees.IndexNode).index::Any)
└────────────────────
┌ nextsibling(idx::AbstractTrees.IndexNode) @ AbstractTrees ~/.julia/packages/AbstractTrees/EUx8s/src/indexing.jl:132
│ no matching method found `nextsiblingindex(::Any, ::Any)`: sidx = nextsiblingindex((idx::AbstractTrees.IndexNode).tree::Any, (idx::AbstractTrees.IndexNode).index::Any)
└────────────────────
┌ prevsibling(idx::AbstractTrees.IndexNode) @ AbstractTrees ~/.julia/packages/AbstractTrees/EUx8s/src/indexing.jl:137
│ no matching method found `prevsiblingindex(::Any, ::Any)`: sidx = prevsiblingindex((idx::AbstractTrees.IndexNode).tree::Any, (idx::AbstractTrees.IndexNode).index::Any)
└────────────────────
┌ prevsibling(csr::AbstractTrees.IndexedCursor) @ AbstractTrees ~/.julia/packages/AbstractTrees/EUx8s/src/cursors.jl:234
│ no matching method found `getindex(::Nothing, ::Int64)` (1/2 union split): (AbstractTrees.parent(csr::AbstractTrees.IndexedCursor)::Union{Nothing, AbstractTrees.IndexedCursor})[idx::Int64]
└────────────────────
┌ (::AbstractTrees.var"#17#18")(n::Any) @ AbstractTrees ~/.julia/packages/AbstractTrees/EUx8s/src/iteration.jl:323
│ no matching method found `parent(::Any, ::Any)`: AbstractTrees.parent(getfield(#self#::AbstractTrees.var"#17#18", :tree)::Any, n::Any)
└────────────────────
JET explores the functions you call directly as well as their inferable callees. However, if the argument types for a call cannot be inferred, JET does not analyze the callee. Consequently, a report of No errors detected
does not imply that your entire codebase is free of errors. To increase the confidence in JET's results use @report_opt
to make sure your code is inferrible.
JET integrates with SnoopCompile, and you can sometimes use SnoopCompile to collect the data to perform more comprehensive analyses. SnoopCompile's limitation is that it only collects data for calls that have not been previously inferred, so you must perform this type of analysis in a fresh session.
See SnoopCompile's JET-integration documentation for further details.
This project started as my undergrad thesis project at Kyoto University, supervised by Prof. Takashi Sakuragawa. We were heavily inspired by ruby/typeprof, an experimental type understanding/checking tool for Ruby. The grad thesis about this project is published at https://github.com/aviatesk/grad-thesis, but currently, it's only available in Japanese.