A Python module for (local) Poisson-Nijenhuis calculus on Poisson manifolds, with the following functions:
num_bivector_field | num_bivector_to_matrix | num_poisson_bracket |
---|---|---|
num_hamiltonian_vf | num_sharp_morphism | num_coboundary_operator |
num_modular_vf | num_curl_operator | num_one_forms_bracket |
num_gauge_transformation | num_linear_normal_form_R3 | num_flaschka_ratiu_bivector |
This repository accompanies our paper 'On Computational Poisson Geometry II: Numerical Methods'.
This project includes numerical methods that implementation parts of:
- Miguel Evangelista-Alvarado, José C. Ruíz Pantaleón & P. Suárez-Serrato, (2021)
On Computational Poisson Geometry I: Symbolic Foundations,
Journal of Geometric Mechanics, Vol 13, Issue 4.
Our issue tracker is at https://github.com/appliedgeometry/NumericalPoissonGeometry/issues. Please report any bugs that you find. Or, even better, if you are interested in our project you can fork the repository on GitHub and create a pull request.
MIT licence
This work is developed and maintained by:
- José C. Ruíz Pantaleón - @jcrpanta
- Pablo Suárez Serrato - @psuarezserrato
- Miguel Evangelista-Alvarado - @mevangelista-alvarado
@articleInfo{ERS2021,
title = {On computational Poisson geometry II: Numerical methods},
journal = {Journal of Computational Dynamics},
volume = {8},
number = {3},
pages = {273-307}
year = {2021},
issn = {2158-2491},
doi = {10.3934/jcd.2021012},
url = {https://www.aimsciences.org/article/id/6aacf722-3708-40d1-9e7b-770f289551ed},
author = {Miguel Ángel Evangelista-Alvarado and José Crispín Ruíz-Pantaleón and Pablo Suárez-Serrato},
keywords = {Poisson structures, Hamiltonian dynamics, Poisson–Nijenhuis calculus, numerical methods, Python}
}
This work was partially supported by the grants CONACyT, “Programa para un Avance Global e Integrado de la Matemática Mexicana” CONACyT-FORDECYT 26566 and "Aprendizaje Geométrico Profundo" UNAM-DGAPA-PAPIIT-IN104819. JCRP wishes to also thank CONACyT for a postdoctoral fellowship held during the production of this work.