Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

add import_ for SymbolBlock #11127

Merged
merged 12 commits into from
Jun 14, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion docs/tutorials/gluon/hybrid.md
Original file line number Diff line number Diff line change
Expand Up @@ -117,7 +117,7 @@ x = mx.sym.var('data')
y = net(x)
print(y)
y.save('model.json')
net.save_params('model.params')
net.save_parameters('model.params')
```

If your network outputs more than one value, you can use `mx.sym.Group` to
Expand Down
6 changes: 3 additions & 3 deletions docs/tutorials/gluon/naming.md
Original file line number Diff line number Diff line change
Expand Up @@ -203,12 +203,12 @@ except Exception as e:
Parameter 'model1_dense0_weight' is missing in file 'model.params', which contains parameters: 'model0_mydense_weight', 'model0_dense1_bias', 'model0_dense1_weight', 'model0_dense0_weight', 'model0_dense0_bias', 'model0_mydense_bias'. Please make sure source and target networks have the same prefix.


To solve this problem, we use `save_params`/`load_params` instead of `collect_params` and `save`/`load`. `save_params` uses model structure, instead of parameter name, to match parameters.
To solve this problem, we use `save_parameters`/`load_parameters` instead of `collect_params` and `save`/`load`. `save_parameters` uses model structure, instead of parameter name, to match parameters.


```python
model0.save_params('model.params')
model1.load_params('model.params')
model0.save_parameters('model.params')
model1.load_parameters('model.params')
print(mx.nd.load('model.params').keys())
```

Expand Down
16 changes: 4 additions & 12 deletions docs/tutorials/gluon/save_load_params.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,7 @@ Parameters of any Gluon model can be saved using the `save_params` and `load_par

**2. Save/load model parameters AND architecture**

The Model architecture of `Hybrid` models stays static and don't change during execution. Therefore both model parameters AND architecture can be saved and loaded using `export`, `load_checkpoint` and `load` methods.
The Model architecture of `Hybrid` models stays static and don't change during execution. Therefore both model parameters AND architecture can be saved and loaded using `export`, `imports` methods.

Let's look at the above methods in more detail. Let's start by importing the modules we'll need.

Expand Down Expand Up @@ -61,7 +61,7 @@ def build_lenet(net):
net.add(gluon.nn.Dense(512, activation="relu"))
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

L13 there is also "load_checkpoint and load methods" -> "imports method

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

we can make this change as part of another PR to avoid another round of CI.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

sorry didnt realize this was already in.

# Second fully connected layer with as many neurons as the number of classes
net.add(gluon.nn.Dense(num_outputs))

return net

# Train a given model using MNIST data
Expand Down Expand Up @@ -240,18 +240,10 @@ One of the main reasons to serialize model architecture into a JSON file is to l

### From Python

Serialized Hybrid networks (saved as .JSON and .params file) can be loaded and used inside Python frontend using `mx.model.load_checkpoint` and `gluon.nn.SymbolBlock`. To demonstrate that, let's load the network we serialized above.
Serialized Hybrid networks (saved as .JSON and .params file) can be loaded and used inside Python frontend using `gluon.nn.SymbolBlock`. To demonstrate that, let's load the network we serialized above.

```python
# Load the network architecture and parameters
sym = mx.sym.load('lenet-symbol.json')
# Create a Gluon Block using the loaded network architecture.
# 'inputs' parameter specifies the name of the symbol in the computation graph
# that should be treated as input. 'data' is the default name used for input when
# a model architecture is saved to a file.
deserialized_net = gluon.nn.SymbolBlock(outputs=sym, inputs=mx.sym.var('data'))
# Load the parameters
deserialized_net.collect_params().load('lenet-0001.params', ctx=ctx)
deserialized_net = gluon.nn.SymbolBlock.imports("lenet-symbol.json", ['data'], "lenet-0001.params")
```

`deserialized_net` now contains the network we deserialized from files. Let's test the deserialized network to make sure it works.
Expand Down
8 changes: 4 additions & 4 deletions example/gluon/dcgan.py
Original file line number Diff line number Diff line change
Expand Up @@ -229,8 +229,8 @@ def transformer(data, label):
logging.info('time: %f' % (time.time() - tic))

if check_point:
netG.save_params(os.path.join(outf,'generator_epoch_%d.params' %epoch))
netD.save_params(os.path.join(outf,'discriminator_epoch_%d.params' % epoch))
netG.save_parameters(os.path.join(outf,'generator_epoch_%d.params' %epoch))
netD.save_parameters(os.path.join(outf,'discriminator_epoch_%d.params' % epoch))

netG.save_params(os.path.join(outf, 'generator.params'))
netD.save_params(os.path.join(outf, 'discriminator.params'))
netG.save_parameters(os.path.join(outf, 'generator.params'))
netD.save_parameters(os.path.join(outf, 'discriminator.params'))
2 changes: 1 addition & 1 deletion example/gluon/embedding_learning/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -246,7 +246,7 @@ def train(epochs, ctx):
if val_accs[0] > best_val:
best_val = val_accs[0]
logging.info('Saving %s.' % opt.save_model_prefix)
net.save_params('%s.params' % opt.save_model_prefix)
net.save_parameters('%s.params' % opt.save_model_prefix)
return best_val


Expand Down
8 changes: 4 additions & 4 deletions example/gluon/image_classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -122,7 +122,7 @@ def get_model(model, ctx, opt):

net = models.get_model(model, **kwargs)
if opt.resume:
net.load_params(opt.resume)
net.load_parameters(opt.resume)
elif not opt.use_pretrained:
if model in ['alexnet']:
net.initialize(mx.init.Normal())
Expand Down Expand Up @@ -176,12 +176,12 @@ def update_learning_rate(lr, trainer, epoch, ratio, steps):
def save_checkpoint(epoch, top1, best_acc):
if opt.save_frequency and (epoch + 1) % opt.save_frequency == 0:
fname = os.path.join(opt.prefix, '%s_%d_acc_%.4f.params' % (opt.model, epoch, top1))
net.save_params(fname)
net.save_parameters(fname)
logger.info('[Epoch %d] Saving checkpoint to %s with Accuracy: %.4f', epoch, fname, top1)
if top1 > best_acc[0]:
best_acc[0] = top1
fname = os.path.join(opt.prefix, '%s_best.params' % (opt.model))
net.save_params(fname)
net.save_parameters(fname)
logger.info('[Epoch %d] Saving checkpoint to %s with Accuracy: %.4f', epoch, fname, top1)

def train(opt, ctx):
Expand Down Expand Up @@ -267,7 +267,7 @@ def main():
optimizer = 'sgd',
optimizer_params = {'learning_rate': opt.lr, 'wd': opt.wd, 'momentum': opt.momentum, 'multi_precision': True},
initializer = mx.init.Xavier(magnitude=2))
mod.save_params('image-classifier-%s-%d-final.params'%(opt.model, opt.epochs))
mod.save_parameters('image-classifier-%s-%d-final.params'%(opt.model, opt.epochs))
else:
if opt.mode == 'hybrid':
net.hybridize()
Expand Down
2 changes: 1 addition & 1 deletion example/gluon/mnist.py
Original file line number Diff line number Diff line change
Expand Up @@ -117,7 +117,7 @@ def train(epochs, ctx):
name, val_acc = test(ctx)
print('[Epoch %d] Validation: %s=%f'%(epoch, name, val_acc))

net.save_params('mnist.params')
net.save_parameters('mnist.params')


if __name__ == '__main__':
Expand Down
8 changes: 4 additions & 4 deletions example/gluon/style_transfer/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,7 +55,7 @@ def train(args):
style_model.initialize(init=mx.initializer.MSRAPrelu(), ctx=ctx)
if args.resume is not None:
print('Resuming, initializing using weight from {}.'.format(args.resume))
style_model.load_params(args.resume, ctx=ctx)
style_model.load_parameters(args.resume, ctx=ctx)
print('style_model:',style_model)
# optimizer and loss
trainer = gluon.Trainer(style_model.collect_params(), 'adam',
Expand Down Expand Up @@ -121,14 +121,14 @@ def train(args):
str(count) + "_" + str(time.ctime()).replace(' ', '_') + "_" + str(
args.content_weight) + "_" + str(args.style_weight) + ".params"
save_model_path = os.path.join(args.save_model_dir, save_model_filename)
style_model.save_params(save_model_path)
style_model.save_parameters(save_model_path)
print("\nCheckpoint, trained model saved at", save_model_path)

# save model
save_model_filename = "Final_epoch_" + str(args.epochs) + "_" + str(time.ctime()).replace(' ', '_') + "_" + str(
args.content_weight) + "_" + str(args.style_weight) + ".params"
save_model_path = os.path.join(args.save_model_dir, save_model_filename)
style_model.save_params(save_model_path)
style_model.save_parameters(save_model_path)
print("\nDone, trained model saved at", save_model_path)


Expand All @@ -143,7 +143,7 @@ def evaluate(args):
style_image = utils.preprocess_batch(style_image)
# model
style_model = net.Net(ngf=args.ngf)
style_model.load_params(args.model, ctx=ctx)
style_model.load_parameters(args.model, ctx=ctx)
# forward
style_model.set_target(style_image)
output = style_model(content_image)
Expand Down
4 changes: 2 additions & 2 deletions example/gluon/super_resolution.py
Original file line number Diff line number Diff line change
Expand Up @@ -168,13 +168,13 @@ def train(epoch, ctx):
print('training mse at epoch %d: %s=%f'%(i, name, acc))
test(ctx)

net.save_params('superres.params')
net.save_parameters('superres.params')

def resolve(ctx):
from PIL import Image
if isinstance(ctx, list):
ctx = [ctx[0]]
net.load_params('superres.params', ctx=ctx)
net.load_parameters('superres.params', ctx=ctx)
img = Image.open(opt.resolve_img).convert('YCbCr')
y, cb, cr = img.split()
data = mx.nd.expand_dims(mx.nd.expand_dims(mx.nd.array(y), axis=0), axis=0)
Expand Down
2 changes: 1 addition & 1 deletion example/gluon/tree_lstm/main.py
Original file line number Diff line number Diff line change
Expand Up @@ -138,7 +138,7 @@ def test(ctx, data_iter, best, mode='validation', num_iter=-1):
if test_r >= best:
best = test_r
logging.info('New optimum found: {}. Checkpointing.'.format(best))
net.save_params('childsum_tree_lstm_{}.params'.format(num_iter))
net.save_parameters('childsum_tree_lstm_{}.params'.format(num_iter))
test(ctx, test_iter, -1, 'test')
return best

Expand Down
4 changes: 2 additions & 2 deletions example/gluon/word_language_model/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -185,14 +185,14 @@ def train():
if val_L < best_val:
best_val = val_L
test_L = eval(test_data)
model.save_params(args.save)
model.save_parameters(args.save)
print('test loss %.2f, test ppl %.2f'%(test_L, math.exp(test_L)))
else:
args.lr = args.lr*0.25
trainer.set_learning_rate(args.lr)

if __name__ == '__main__':
train()
model.load_params(args.save, context)
model.load_parameters(args.save, context)
test_L = eval(test_data)
print('Best test loss %.2f, test ppl %.2f'%(test_L, math.exp(test_L)))
90 changes: 84 additions & 6 deletions python/mxnet/gluon/block.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
# under the License.

# coding: utf-8
# pylint: disable= arguments-differ
# pylint: disable= arguments-differ, too-many-lines
"""Base container class for all neural network models."""
__all__ = ['Block', 'HybridBlock', 'SymbolBlock']

Expand Down Expand Up @@ -307,7 +307,7 @@ def _collect_params_with_prefix(self, prefix=''):
ret.update(child._collect_params_with_prefix(prefix + name))
return ret

def save_params(self, filename):
def save_parameters(self, filename):
"""Save parameters to file.

filename : str
Expand All @@ -317,8 +317,23 @@ def save_params(self, filename):
arg_dict = {key : val._reduce() for key, val in params.items()}
ndarray.save(filename, arg_dict)

def load_params(self, filename, ctx=None, allow_missing=False,
ignore_extra=False):
def save_params(self, filename):
"""[Deprecated] Please use save_parameters.

Save parameters to file.

filename : str
Path to file.
"""
warnings.warn("save_params is deprecated. Please use save_parameters.")
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

shall we add something about export? Something like "If you are using an hybridized model and want to serialize it to obtain the network structure and parameters, please refer to HybridBlock.export()"

try:
self.collect_params().save(filename, strip_prefix=self.prefix)
except ValueError as e:
raise ValueError('%s\nsave_params is deprecated. Using ' \
'save_parameters may resolve this error.'%e.message)

def load_parameters(self, filename, ctx=None, allow_missing=False,
ignore_extra=False):
"""Load parameters from file.

filename : str
Expand Down Expand Up @@ -357,6 +372,25 @@ def load_params(self, filename, ctx=None, allow_missing=False,
name, filename, _brief_print_list(self._params.keys())))
params[name]._load_init(loaded[name], ctx)

def load_params(self, filename, ctx=None, allow_missing=False,
ignore_extra=False):
"""[Deprecated] Please use load_parameters.

Load parameters from file.

filename : str
Path to parameter file.
ctx : Context or list of Context, default cpu()
Context(s) initialize loaded parameters on.
allow_missing : bool, default False
Whether to silently skip loading parameters not represents in the file.
ignore_extra : bool, default False
Whether to silently ignore parameters from the file that are not
present in this Block.
"""
warnings.warn("load_params is deprecated. Please use load_parameters.")
self.load_parameters(filename, ctx, allow_missing, ignore_extra)

def register_child(self, block, name=None):
"""Registers block as a child of self. :py:class:`Block` s assigned to self as
attributes will be registered automatically."""
Expand Down Expand Up @@ -770,8 +804,8 @@ def infer_type(self, *args):
self._infer_attrs('infer_type', 'dtype', *args)

def export(self, path, epoch=0):
"""Export HybridBlock to json format that can be loaded by `mxnet.mod.Module`
or the C++ interface.
"""Export HybridBlock to json format that can be loaded by
`SymbolBlock.imports`, `mxnet.mod.Module` or the C++ interface.

.. note:: When there are only one input, it will have name `data`. When there
Are more than one inputs, they will be named as `data0`, `data1`, etc.
Expand Down Expand Up @@ -885,6 +919,50 @@ class SymbolBlock(HybridBlock):
>>> x = mx.nd.random.normal(shape=(16, 3, 224, 224))
>>> print(feat_model(x))
"""
@staticmethod
def imports(symbol_file, input_names, param_file=None, ctx=None):
"""Import model previously saved by `HybridBlock.export` or
`Module.save_checkpoint` as a SymbolBlock for use in Gluon.

Parameters
----------
symbol_file : str
Path to symbol file.
input_names : list of str
List of input variable names
param_file : str, optional
Path to parameter file.
ctx : Context, default None
The context to initialize SymbolBlock on.

Returns
-------
SymbolBlock
SymbolBlock loaded from symbol and parameter files.

Examples
--------
>>> net1 = gluon.model_zoo.vision.resnet18_v1(
... prefix='resnet', pretrained=True)
>>> net1.hybridize()
>>> x = mx.nd.random.normal(shape=(1, 3, 32, 32))
>>> out1 = net1(x)
>>> net1.export('net1', epoch=1)
>>>
>>> net2 = gluon.SymbolBlock.imports(
... 'net1-symbol.json', ['data'], 'net1-0001.params')
>>> out2 = net2(x)
"""
sym = symbol.load(symbol_file)
if isinstance(input_names, str):
input_names = [input_names]
inputs = [symbol.var(i) for i in input_names]
ret = SymbolBlock(sym, inputs)
if param_file is not None:
ret.collect_params().load(param_file, ctx=ctx)
return ret


def __init__(self, outputs, inputs, params=None):
super(SymbolBlock, self).__init__(prefix=None, params=None)
self._prefix = ''
Expand Down
2 changes: 1 addition & 1 deletion python/mxnet/gluon/model_zoo/vision/alexnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,5 +83,5 @@ def alexnet(pretrained=False, ctx=cpu(),
net = AlexNet(**kwargs)
if pretrained:
from ..model_store import get_model_file
net.load_params(get_model_file('alexnet', root=root), ctx=ctx)
net.load_parameters(get_model_file('alexnet', root=root), ctx=ctx)
return net
2 changes: 1 addition & 1 deletion python/mxnet/gluon/model_zoo/vision/densenet.py
Original file line number Diff line number Diff line change
Expand Up @@ -141,7 +141,7 @@ def get_densenet(num_layers, pretrained=False, ctx=cpu(),
net = DenseNet(num_init_features, growth_rate, block_config, **kwargs)
if pretrained:
from ..model_store import get_model_file
net.load_params(get_model_file('densenet%d'%(num_layers), root=root), ctx=ctx)
net.load_parameters(get_model_file('densenet%d'%(num_layers), root=root), ctx=ctx)
return net

def densenet121(**kwargs):
Expand Down
2 changes: 1 addition & 1 deletion python/mxnet/gluon/model_zoo/vision/inception.py
Original file line number Diff line number Diff line change
Expand Up @@ -216,5 +216,5 @@ def inception_v3(pretrained=False, ctx=cpu(),
net = Inception3(**kwargs)
if pretrained:
from ..model_store import get_model_file
net.load_params(get_model_file('inceptionv3', root=root), ctx=ctx)
net.load_parameters(get_model_file('inceptionv3', root=root), ctx=ctx)
return net
4 changes: 2 additions & 2 deletions python/mxnet/gluon/model_zoo/vision/mobilenet.py
Original file line number Diff line number Diff line change
Expand Up @@ -213,7 +213,7 @@ def get_mobilenet(multiplier, pretrained=False, ctx=cpu(),
version_suffix = '{0:.2f}'.format(multiplier)
if version_suffix in ('1.00', '0.50'):
version_suffix = version_suffix[:-1]
net.load_params(
net.load_parameters(
get_model_file('mobilenet%s' % version_suffix, root=root), ctx=ctx)
return net

Expand Down Expand Up @@ -245,7 +245,7 @@ def get_mobilenet_v2(multiplier, pretrained=False, ctx=cpu(),
version_suffix = '{0:.2f}'.format(multiplier)
if version_suffix in ('1.00', '0.50'):
version_suffix = version_suffix[:-1]
net.load_params(
net.load_parameters(
get_model_file('mobilenetv2_%s' % version_suffix, root=root), ctx=ctx)
return net

Expand Down
4 changes: 2 additions & 2 deletions python/mxnet/gluon/model_zoo/vision/resnet.py
Original file line number Diff line number Diff line change
Expand Up @@ -386,8 +386,8 @@ def get_resnet(version, num_layers, pretrained=False, ctx=cpu(),
net = resnet_class(block_class, layers, channels, **kwargs)
if pretrained:
from ..model_store import get_model_file
net.load_params(get_model_file('resnet%d_v%d'%(num_layers, version),
root=root), ctx=ctx)
net.load_parameters(get_model_file('resnet%d_v%d'%(num_layers, version),
root=root), ctx=ctx)
return net

def resnet18_v1(**kwargs):
Expand Down
2 changes: 1 addition & 1 deletion python/mxnet/gluon/model_zoo/vision/squeezenet.py
Original file line number Diff line number Diff line change
Expand Up @@ -132,7 +132,7 @@ def get_squeezenet(version, pretrained=False, ctx=cpu(),
net = SqueezeNet(version, **kwargs)
if pretrained:
from ..model_store import get_model_file
net.load_params(get_model_file('squeezenet%s'%version, root=root), ctx=ctx)
net.load_parameters(get_model_file('squeezenet%s'%version, root=root), ctx=ctx)
return net

def squeezenet1_0(**kwargs):
Expand Down
Loading