Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
[MXNET-1408] Adding test to verify Large Tensor Support for ravel and…
Browse files Browse the repository at this point in the history
… unravel (#15048)
  • Loading branch information
access2rohit authored and apeforest committed Jun 1, 2019
1 parent e8a20fb commit 75a90d0
Show file tree
Hide file tree
Showing 2 changed files with 37 additions and 18 deletions.
6 changes: 6 additions & 0 deletions python/mxnet/test_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -419,6 +419,12 @@ def rand_shape_nd(num_dim, dim=10):
return tuple(rnd.randint(1, dim+1, size=num_dim))


def rand_coord_2d(x_low, x_high, y_low, y_high):
x = np.random.randint(x_low, x_high, dtype=np.int64)
y = np.random.randint(y_low, y_high, dtype=np.int64)
return x, y


def np_reduce(dat, axis, keepdims, numpy_reduce_func):
"""Compatible reduce for old version of NumPy.
Expand Down
49 changes: 31 additions & 18 deletions tests/nightly/test_large_array.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,9 +15,9 @@
# specific language governing permissions and limitations
# under the License.

import mxnet as mx
import numpy as np
from mxnet.test_utils import rand_ndarray, assert_almost_equal
import mxnet as mx
from mxnet.test_utils import rand_ndarray, assert_almost_equal, rand_coord_2d
from mxnet import gluon, nd
from tests.python.unittest.common import with_seed

Expand Down Expand Up @@ -74,7 +74,7 @@ def test_ndarray_random_randint():
# check if randint can generate value greater than 2**32 (large)
low_large_value = 2**32
high_large_value = 2**34
a = nd.random.randint(low_large_value,high_large_value, dtype=np.int64)
a = nd.random.randint(low_large_value, high_large_value, dtype=np.int64)
low = mx.nd.array([low_large_value], dtype='int64')
high = mx.nd.array([high_large_value], dtype='int64')
assert a.__gt__(low) and a.__lt__(high)
Expand Down Expand Up @@ -130,13 +130,6 @@ def test_clip():
assert np.sum(res[-1].asnumpy() == 1000) == a.shape[1]


def test_take():
a = nd.ones(shape=(LARGE_X, SMALL_Y))
idx = nd.arange(LARGE_X-1000, LARGE_X)
res = nd.take(a, idx)
assert np.sum(res[-1].asnumpy() == 1) == res.shape[1]


def test_split():
a = nd.arange(0, LARGE_X * SMALL_Y).reshape(LARGE_X, SMALL_Y)
outs = nd.split(a, num_outputs=SMALL_Y, axis=1)
Expand Down Expand Up @@ -215,9 +208,9 @@ def test_where():


def test_pick():
a = mx.nd.ones(shape=(256*35, 1024*1024))
b = mx.nd.ones(shape=(256*35,))
res = mx.nd.pick(a,b)
a = mx.nd.ones(shape=(256 * 35, 1024 * 1024))
b = mx.nd.ones(shape=(256 * 35, ))
res = mx.nd.pick(a, b)
assert res.shape == b.shape


Expand Down Expand Up @@ -252,11 +245,9 @@ def numpy_space_to_depth(x, blocksize):
output = mx.nd.space_to_depth(data, 2)
assert_almost_equal(output.asnumpy(), expected, atol=1e-3, rtol=1e-3)


@with_seed()
def test_diag():
h = np.random.randint(2,9)
w = np.random.randint(2,9)
a_np = np.random.random((LARGE_X, 64)).astype(np.float32)
a_np = np.random.random((LARGE_X, SMALL_Y)).astype(np.float32)
a = mx.nd.array(a_np)

# k == 0
Expand All @@ -274,11 +265,33 @@ def test_diag():
assert_almost_equal(r.asnumpy(), np.diag(a_np, k=k))

# random k
k = np.random.randint(-min(LARGE_X, 64) + 1, min(h, w))
k = np.random.randint(-min(LARGE_X, SMALL_Y) + 1, min(LARGE_X, SMALL_Y))
r = mx.nd.diag(a, k=k)
assert_almost_equal(r.asnumpy(), np.diag(a_np, k=k))


@with_seed()
def test_ravel_multi_index():
x1, y1 = rand_coord_2d((LARGE_X - 100), LARGE_X, 10, SMALL_Y)
x2, y2 = rand_coord_2d((LARGE_X - 200), LARGE_X, 9, SMALL_Y)
x3, y3 = rand_coord_2d((LARGE_X - 300), LARGE_X, 8, SMALL_Y)
indices_2d = [[x1, x2, x3], [y1, y2, y3]]
idx = mx.nd.ravel_multi_index(mx.nd.array(indices_2d, dtype=np.int64), shape=(LARGE_X, SMALL_Y))
idx_numpy = np.ravel_multi_index(indices_2d, (LARGE_X, SMALL_Y))
assert np.sum(1 for i in range(idx.size) if idx[i] == idx_numpy[i]) == 3


@with_seed()
def test_unravel_index():
x1, y1 = rand_coord_2d((LARGE_X - 100), LARGE_X, 10, SMALL_Y)
x2, y2 = rand_coord_2d((LARGE_X - 200), LARGE_X, 9, SMALL_Y)
x3, y3 = rand_coord_2d((LARGE_X - 300), LARGE_X, 8, SMALL_Y)
original_2d_indices = [[x1, x2, x3], [y1, y2, y3]]
idx_numpy = np.ravel_multi_index(original_2d_indices, (LARGE_X, SMALL_Y))
indices_2d = mx.nd.unravel_index(mx.nd.array(idx_numpy, dtype=np.int64), shape=(LARGE_X, SMALL_Y))
assert (indices_2d.asnumpy() == np.array(original_2d_indices)).all()


if __name__ == '__main__':
import nose
nose.runmodule()

0 comments on commit 75a90d0

Please sign in to comment.