-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathFFT_PEEC_COND.m
380 lines (380 loc) · 12 KB
/
FFT_PEEC_COND.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
%% FFT-PEEC: CONDUCTORS
close all
clear global
clear
clc
restoredefaultpath
warning on
format short
%%
%% BEGIN USER SETTINGS
%%
%% Directory
name_dir='test6';
%% Frequency
freq = 5e6; %[Hz]
%% Selections
plot_vectorsJ_flag = 1; %quiver plot of real and imag of J
plot_potential_flag = 1; %color plot of phi real and imag
paraview_export_flag = 1; % export to paraviw
refine.flag = 0; refine.x=1; refine.y=1; refine.z=1; % refine
capacitive_effects_flag = 1; % capacitive effects flag
retardation_flag = 0; % retarded potential flag
Integration_flag = 'NumAn'; %'NumAn'; 'NumNum' (Integration: NumericalNumerical or AnalyticalNumerical)
ext_field_flag = 0; % exernal field
% below you can write the external electric field as a function of x,y,z
% and omega. Active only if ext_field_flag=1
Ex_ext = @(x,y,z,omega) -1j*omega*y; Ey_ext = @(x,y,z,omega) 1j*omega*x; Ez_ext = @(x,y,z,omega) 0*z; % external field
%% Solver parameters
tol = 1e-6;
inner_it = 90;
outer_it = 1;
%%
%% END USER SETTINGS
%%
%% Add Path
dad = pwd;
cd('fun'); addpath(genpath(pwd)); cd(dad)
cd('fortran'); addpath(pwd); cd(dad)
cd('data'); cd(name_dir); load('data.mat');
fileList = dir('*.stl');
figure
hold on
xmin=[];xmax=[];ymin=[];ymax=[];zmin=[];zmax=[];ccolor=distinguishable_colors(size(fileList,1));
for ii = 1:size(fileList,1)
[stlcoords] = READ_stl(fileList(ii).name);
xco = squeeze( stlcoords(:,1,:) )';
yco = squeeze( stlcoords(:,2,:) )';
zco = squeeze( stlcoords(:,3,:) )';
[hpat] = patch(xco,yco,zco,ccolor(ii,:));
axis equal
xlabel('x');
ylabel('y');
zlabel('z');
view(3)
title('stl (original, not scaled)')
drawnow
end
try
disp('-------------------------------------------------------------------')
disp(' ')
type('comments.txt')
disp(' ')
disp('PRESS ANY BUTTON TO CONTINUE')
disp(' ')
pause
disp(' ')
disp('-------------------------------------------------------------------')
end
cd(dad)
modelname = name_dir;
%% refine
if refine.flag
warning('refine on')
mymod=1;
for ii = 1:refine.x
[Ind,L,M,N,xyz,smeshx,smeshy,smeshz,Nmat,nVoxel] = fun_refine(Ind,xyz,smeshx,smeshy,smeshz,Nmat,L,M,N,1,mymod);
end
for ii = 1:refine.y
[Ind,L,M,N,xyz,smeshx,smeshy,smeshz,Nmat,nVoxel] = fun_refine(Ind,xyz,smeshx,smeshy,smeshz,Nmat,L,M,N,2,mymod);
end
for ii = 1:refine.z
[Ind,L,M,N,xyz,smeshx,smeshy,smeshz,Nmat,nVoxel] = fun_refine(Ind,xyz,smeshx,smeshy,smeshz,Nmat,L,M,N,3,mymod);
end
end
%% EM constants
mu = 4*pi*1e-7;
co = 299792458;
eo = 1/co^2/mu;
omega = 2*pi*freq;
%% extract data information
rhoVoxel=zeros(nVoxel,1);
idxV=[]; rhomin=Inf; ind_c=[]; val_c=[]; k=1;
for ii = 1:Nmat
Ind(ii).ind=reshape(Ind(ii).ind,length(Ind(ii).ind),1);
if strcmp(Ind(ii).tag,'air') || strcmp(Ind(ii).tag,'mag') || strcmp(Ind(ii).tag,'diel')
% nothing to do here (?)
elseif strcmp(Ind(ii).tag,'cond')
idxV=[idxV;Ind(ii).ind];
rhoVoxel(Ind(ii).ind,1)=Ind(ii).rho;
rhomin=min([rhomin,Ind(ii).rho]);
elseif strcmp(Ind(ii).tag,'terminal')
idxV=[idxV;Ind(ii).ind];
rhoVoxel(Ind(ii).ind,1)=Ind(ii).rho;
rhomin=min([rhomin,Ind(ii).rho]);
ind_c(k)=Ind(ii).ind(1);
val_c(k)=Ind(ii).cur;
k=k+1;
end
end
idxV=unique(idxV);
del = sqrt(2*rhomin/omega/mu); %skin effect: penetration depth
%% Grid Definition
disp('----DOMAIN--------------------------------')
%%Grid resolution
disp([' Number of voxels in x direction: ', num2str(L)])
disp([' Number of voxels in y direction: ', num2str(M)])
disp([' Number of voxels in z direction: ', num2str(N)])
disp(' Resolution:')
dx = smeshx; dy = smeshy; dz = smeshz;
disp([' dx = ',num2str(dx),' m']); disp([' dy = ',num2str(dy),' m']); disp([' dz = ',num2str(dz),' m'])
d = [dx dy dz];
Kt = nVoxel; %total number of voxels
K = length(idxV); %number of non-empty voxels
%% Set Material Properties
rho_eV=reshape(rhoVoxel,L,M,N); %
clear rhoVoxel
%%
disp([' Total number of voxels: ', num2str(Kt)])
disp([' Number of non-empty voxels: ', num2str(K)])
disp(' ')
%% Incidence Matix A
disp('----COMPUTING INCIDENCE--------------------------------')
mytic=tic;
[Ae,Aee,idxF,idxFx,idxFy,idxFz,Ae1x,Ae1y,Ae1z] = ...
incidence_matrix3(Kt,[L M N],idxV);
if capacitive_effects_flag==0
ind=zeros(L*M*N,1);
ind(ind_c)=val_c;
ind=ind(idxV);
ind=setdiff(1:length(idxV),find(ind));
Aee(max(ind),:)=[];
idxV(max(ind))=[];
K = length(idxV); %number of non-empty voxels
end
disp([' Number of DoFs: ', num2str(size(Aee,1)+size(Aee,2))])
disp([' Time for computing incidence ::: ' ,num2str(toc(mytic))]);
disp(' ')
%% Forcing Term: Incident E field
% NOTE: Electric field with components (-iwy/2,iwx/2,0)
% since component x (y) does not depend on x(y), field is calculated at voxel
% barycenter; but in general must be calculated in barycenters of faces!!!
% Thus, we are introducing an approximation here.
if ext_field_flag
Ex = Ex_ext(xyz(:,:,:,1),xyz(:,:,:,2),xyz(:,:,:,3),omega);
Ey = Ey_ext(xyz(:,:,:,1),xyz(:,:,:,2),xyz(:,:,:,3),omega);
Ez = Ez_ext(xyz(:,:,:,1),xyz(:,:,:,2),xyz(:,:,:,3),omega);
%%RHS array: <Einc,f_a>_V = int_V dot(Einc,f_a) dV
Gram = dx*dy*dz; %volume of cubic element
Vx = (Gram.*Ex)./(dy*dz);
Vy = (Gram.*Ey)./(dx*dz);
Vz = (Gram.*Ez)./(dx*dy);
clear Ex Ey Ez
else
Vx=zeros(L*M*N,1);
Vy=zeros(L*M*N,1);
Vz=zeros(L*M*N,1);
end
%% Matrices Z_real and Z_imag
rho_eF=0.5*(abs(Ae(:,:)).'*rho_eV(:)); clear Ae rho_eV
z_realF=rho_eF;
indFneq=setdiff([1:3*Kt].',idxF);
z_realF(indFneq,:)=0;
z_realx=zeros(L,M,N);
z_realx(idxFx)=z_realF(idxFx);
z_realy=zeros(L,M,N);
z_realy(idxFy)=z_realF(Kt+idxFy);
z_realz=zeros(L,M,N);
z_realz(idxFz)=z_realF(2*Kt+idxFz);
%% Compute Green Tensor
disp('----COMPUTING GREEN TENSOR--------------------------------')
mytic_G=tic;
[Gmn] = computeGREEN(d,L,M,N,Integration_flag);
disp([' Time for getting Green tensor ::: ' ,num2str(toc(mytic_G))]);
disp(' ')
%% Compute Exponential Tensor For Retardation
if retardation_flag
lambda = co./freq;
ko = 2*pi./lambda;
[Emn] = expGREEN(ko,d,L,M,N);
Gmn = Gmn.*Emn;
clear Emn %clear exponential tensor
end
%% Compute Circulant Tensors
disp('----COMPUTING CIRCULANT TENSOR--------------------------------')
disp(' Circulant Tensors related to P,L matrices')
mytic_cir=tic;
if capacitive_effects_flag
[opCirculantP_all,st_sparse_preconP] = computeCIRCULANT(Gmn,d,'P');
else
opCirculantP_all=[];
end
[opCirculantL_all,st_sparse_preconL] = computeCIRCULANT(Gmn,d,'L');
%%Add constants to Circulants
if capacitive_effects_flag
opCirculantP_all = opCirculantP_all/eo;
st_sparse_preconP = st_sparse_preconP/eo;
else
st_sparse_preconP=[];
end
opCirculantL_all = (1j*omega*mu)*opCirculantL_all;
st_sparse_preconL = (1j*omega*mu)*st_sparse_preconL;
disp([' Time for getting circulant tensors ::: ' ,num2str(toc(mytic_cir))])
clear Gmn %Green tensor is not used anymore
disp(' ')
%% Generating RHS vector
num_node = size(Aee,1); %all potential nodes in non-empty voxels
num_curr = size(Aee,2); %all currens in non-empty voxels
%%Define RHS: (injected currents)
iinj=zeros(L*M*N,1);
iinj(ind_c)=val_c;
iinj=iinj(idxV);
if capacitive_effects_flag
QIn = zeros(L,M,N);
QIn(idxV) = iinj;
[LfN, MfN, NfN] = size(opCirculantP_all);
fJ = fftn(QIn(:,:,:),[LfN, MfN, NfN]);
Jout = opCirculantP_all(:,:,:) .* fJ;
JOut = ifftn(Jout);
JOut = JOut(1:L,1:M,1:N);
JOut = JOut(idxV);
if size(JOut,2)>1; JOut=JOut.'; end
rhs_vect = [Vx(idxFx);Vy(idxFy);Vz(idxFz);-JOut];
else
rhs_vect = [Vx(idxFx);Vy(idxFy);Vz(idxFz);-iinj];
end
clear Vx Vy Vz
%% Computing Preconditioner
disp('----COMPUTING PRECONDITIONER--------------------------------')
mytic_prec=tic;
[Y_inv,P_diag,D_diag,LL,UU,PP,QQ,RR] = preparePREC_NEW(d,z_realF,idxFx,idxFy,idxFz,st_sparse_preconP,st_sparse_preconL,Aee,Kt,freq,capacitive_effects_flag);
fPMV = @(JOut_full_in)multiplyPREC_CAP_NEW(JOut_full_in,Aee,Y_inv,P_diag,LL,UU,PP,QQ,RR);
disp([' Time for computing preconditioner ::: ' ,num2str(toc(mytic_prec))]);
disp(' ')
%% Solution of Linear System
disp('----SOLVING LINEAR SYSTEM-------------------------------')
fMVM = @(J) multiplyMATVECT_EDDY_CAP(J,opCirculantL_all,opCirculantP_all,z_realx,z_realy,z_realz,idxF,d,Aee,L,M,N,idxV,freq,capacitive_effects_flag);
mytic_solver=tic;
[vsol] = pgmres_mod(@(J)fMVM(J),rhs_vect, inner_it, tol, outer_it, @(JOut_full_in)fPMV(JOut_full_in) );
disp([' Time for solving system with gmres ::: ' ,num2str(toc(mytic_solver))]);
disp(' ')
%% extract solution
Jout = zeros(L,M,N,3);
Jout(idxF) = vsol(1:num_curr) ; % return to global variables
%%
%% POST PROCESSING
%%
%% Post Processing J
disp('----POST PROCESSING J------------------------------')
mytic_prec=tic;
[J,XYZ] = fun_my_postRT2(Jout,Kt,Ae1x,Ae1y,Ae1z,xyz,L,M,N,d);
potval=zeros(Kt,1);
potval(idxV)=vsol(num_curr+1:end);
disp([' Total time for post processing J ::: ' ,num2str(toc(mytic_prec))]);
disp(' ')
%% impedance (note that the injected current must be 1A!)
Z=potval(ind_c(1))-potval(ind_c(2)); % Z=V/I
Plosses=0.5*vsol(1:num_curr)'*([z_realx(idxFx)*dx/(dy*dz);z_realy(idxFy)*dy/(dx*dz);z_realz(idxFz)*dz/(dy*dx)].*vsol(1:num_curr)); % losses
Ren=Plosses*2;
disp('-------------------------------------------------------------------')
disp(' ')
if retardation_flag
disp([' Impedance: ' ,num2str(Z),' Ohm ']);
else
disp([' Impedance: ' ,num2str(Ren+1j*imag(Z)),' Ohm ']);
end
disp(' ')
disp('-------------------------------------------------------------------')
disp(' ')
%% Plot Vectors
if plot_vectorsJ_flag
jjR = real(J);
figure
subplot(1,2,1)
normJR=sqrt(jjR(:,1).^2+jjR(:,2).^2+jjR(:,3).^2);
quiver3_c_scal(XYZ(:,1),XYZ(:,2),XYZ(:,3),jjR(:,1),jjR(:,2),jjR(:,3),...
normJR,4);
axis equal
c1=colorbar;
caxis([min(normJR) max(normJR)]);
xlabel('x')
ylabel('y')
zlabel('z')
title('Current Density Vector \Re Part')
c1.Location = 'southoutside';
xlim([min(XYZ(:,1))-dx max(XYZ(:,1))+dx])
ylim([min(XYZ(:,2))-dy max(XYZ(:,2))+dy])
zlim([min(XYZ(:,3))-dz max(XYZ(:,3))+dz])
%
jjI = imag(J);
subplot(1,2,2)
normJI=sqrt(jjI(:,1).^2+jjI(:,2).^2+jjI(:,3).^2);
quiver3_c_scal(XYZ(:,1),XYZ(:,2),XYZ(:,3),jjI(:,1),jjI(:,2),jjI(:,3),...
normJI,4);
axis equal
c1=colorbar;
caxis([min(normJI) max(normJI)]);
xlabel('x')
ylabel('y')
zlabel('z')
title('Current Density Vector \Im Part')
c1.Location = 'southoutside';
xlim([min(XYZ(:,1))-dx max(XYZ(:,1))+dx])
ylim([min(XYZ(:,2))-dy max(XYZ(:,2))+dy])
zlim([min(XYZ(:,3))-dz max(XYZ(:,3))+dz])
end
%% plot Potential
if plot_potential_flag
xdp = xyz(:,:,:,1);
ydp = xyz(:,:,:,2);
zdp = xyz(:,:,:,3);
figure
subplot(1,2,1)
scatter3(xdp(idxV),ydp(idxV),zdp(idxV),10,'filled','cdata',(real(potval(idxV))))
axis equal
view(3)
colormap jet
c1=colorbar;
title('Potential \Re')
c1.Location = 'southoutside';
xlim([min(XYZ(:,1))-dx max(XYZ(:,1))+dx])
ylim([min(XYZ(:,2))-dy max(XYZ(:,2))+dy])
zlim([min(XYZ(:,3))-dz max(XYZ(:,3))+dz])
subplot(1,2,2)
scatter3(xdp(idxV),ydp(idxV),zdp(idxV),10,'filled','cdata',imag(potval(idxV)))
axis equal
view(3)
colormap jet
c2=colorbar;
title('Potential \Im')
c2.Location = 'southoutside';
xlim([min(XYZ(:,1))-dx max(XYZ(:,1))+dx])
ylim([min(XYZ(:,2))-dy max(XYZ(:,2))+dy])
zlim([min(XYZ(:,3))-dz max(XYZ(:,3))+dz])
end
%% paraview
if paraview_export_flag
disp('----EXPORT TO PARAVIEW------------------------------')
xd=xyz(:,:,:,1);
yd=xyz(:,:,:,2);
zd=xyz(:,:,:,3);
xidx=xd(idxV);
yidx=yd(idxV);
zidx=zd(idxV);
P0=[...
[xidx-dx/2,yidx-dy/2,zidx+dz/2];...
[xidx-dx/2,yidx-dy/2,zidx-dz/2];...
[xidx+dx/2,yidx-dy/2,zidx-dz/2];...
[xidx+dx/2,yidx-dy/2,zidx+dz/2];...
[xidx-dx/2,yidx+dy/2,zidx+dz/2];...
[xidx-dx/2,yidx+dy/2,zidx-dz/2];...
[xidx+dx/2,yidx+dy/2,zidx-dz/2];...
[xidx+dx/2,yidx+dy/2,zidx+dz/2]];
VP=[1:K;...
K+1:2*K;...
2*K+1:3*K;...
3*K+1:4*K;...
4*K+1:5*K;...
5*K+1:6*K;...
6*K+1:7*K;...
7*K+1:8*K];
warning off
[~] = ...
fun_for_ParaView_vec_HEXA(...
jjR(idxV,:),jjI(idxV,:),P0,VP,dad,[modelname,'J']);
[~] = ...
fun_for_ParaView_sca_HEXA(...
real(potval(idxV,:)),imag(potval(idxV,:)),P0,VP,dad,[modelname,'p']);
warning on
end
%%