Skip to content

Timaos123/BiLSTM-CRF

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Folk了顺便打颗星星呗【卑微脸】

Loading data

import pandas as pd
import numpy as np
myDf=pd.read_csv("data/test.csv")

Preprocessing

myDf["text"]=myDf["text"].apply(lambda x:x+" <end>")
myDf["tag"]=myDf["tag"].apply(lambda x:x+" END")
myDf[:1]
text tag
0 将 军 百 战 死 <end> B I B I S END
myDf.dropna(inplace=True)

Transforming data to one-hot embedding to generalize X

wordIndexDict={"<pad>":0}
wi=1
for row in myDf["text"].values.tolist():
    if type(row)==float:
        print(row)
        break
    for word in row.split(" "):
        if word not in wordIndexDict:
            wordIndexDict[word]=wi
            wi+=1
vocabSize=wi
maxLen=max(len(row) for row in myDf["text"].values.tolist())
sequenceLengths=[len(row) for row in myDf["text"].values.tolist()]
myDf["text"]=myDf["text"].apply(lambda x:[wordIndexDict[word] for word in x.split()])
import tensorflow as tf
X=tf.keras.preprocessing.sequence.pad_sequences(myDf["text"],
                                                value=wordIndexDict["<pad>"],
                                                padding='post',
                                                maxlen=maxLen)
X
array([[ 1,  2,  3,  4,  5,  6,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
         0,  0,  0],
       [ 1,  2,  7,  8,  9,  4, 10,  6,  0,  0,  0,  0,  0,  0,  0,  0,
         0,  0,  0],
       [ 1,  1,  2,  8,  9,  4, 11,  6,  0,  0,  0,  0,  0,  0,  0,  0,
         0,  0,  0],
       [ 2,  4,  1,  2,  6,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
         0,  0,  0],
       [ 1,  2,  4,  1,  2,  6,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
         0,  0,  0],
       [ 1,  2,  4,  1,  2,  6,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
         0,  0,  0]])

Generalizing Y

import tqdm
import re

myDf["tag"]=myDf["tag"].apply(lambda x:re.sub("\-\S+","",x))

tagIndexDict = {"PAD": 0}
ti = 1
for row in tqdm.tqdm(myDf["tag"].values.tolist()):
    for tag in row.split(" "):
        if tag not in tagIndexDict:
            tagIndexDict[tag] = ti
            ti += 1
tagSum = len(list(tagIndexDict.keys()))
myDf["tag"] = myDf["tag"].apply(lambda x:x.split()+["PAD" for i in range(maxLen-len(x.split()))])
myDf["tag"] = myDf["tag"].apply(lambda x:[tagIndexDict[tagItem] for tagItem in x])
# myDf["tag"] = myDf["tag"].apply(lambda x: [[0 if tagI != tagIndexDict[tagItem] else 1
#                                             for tagI in range(len(tagIndexDict))]
#                                             for tagItem in x])
y=np.array(myDf["tag"].values.tolist())
100%|██████████| 6/6 [00:00<?, ?it/s]
y.shape # it is OK whether y is one-hot embedding or not
(6, 19)

Generalizing Model

from BiLSTMCRF import MyBiLSTMCRF
myModel=MyBiLSTMCRF(vocabSize,maxLen, tagIndexDict,tagSum,sequenceLengths)
myModel.myBiLSTMCRF.summary()
Model: "sequential_9"
_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
embedding_9 (Embedding)      (None, 19, 100)           1200
_________________________________________________________________
bidirectional_18 (Bidirectio (None, 19, 5)             4240
_________________________________________________________________
bidirectional_19 (Bidirectio (None, 19, 5)             440
_________________________________________________________________
crf_layer (CRF)              (None, 19)                65
=================================================================
Total params: 5,945
Trainable params: 5,945
Non-trainable params: 0
_________________________________________________________________

training model

history=myModel.fit(X,y,epochs=1500)
......
Epoch 1496/1500
6/6 [==============================] - 0s 6ms/sample - loss: 1.4955
Epoch 1497/1500
6/6 [==============================] - 0s 7ms/sample - loss: 1.4938
Epoch 1498/1500
6/6 [==============================] - 0s 7ms/sample - loss: 1.4922
Epoch 1499/1500
6/6 [==============================] - 0s 6ms/sample - loss: 1.4906
Epoch 1500/1500
6/6 [==============================] - 0s 7ms/sample - loss: 1.4889

predicting

testI=2
preY=myModel.predict(X)[testI]
indexTagDict=dict(list(zip(list(tagIndexDict.values()),list(tagIndexDict.keys()))))
indexWordDict=dict(list(zip(list(wordIndexDict.values()),list(wordIndexDict.keys()))))

sentenceList=[indexWordDict[wordItem] for wordItem in X[testI]]
sentenceList=sentenceList[:sentenceList.index("<end>")]

tagList=[indexTagDict[tagItem] for tagItem in preY]
tagList=tagList[:tagList.index("END")]

print(" ".join(sentenceList))
print(" ".join(tagList))
将 将 军 带 上 战 车
S B I B I B I

About

developed with tensorflow 2.1.0

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published