包含启动项目和运行范例的流程引导
在Linux\MacOS上 运行Quicksql非常简单,但需要确保环境预置完整,依赖的环境有:
· Java >= 1.8
· Spark >= 2.3 (必选,未来作为可选)
· Flink >= 1.9 (可选)
- 下载并解压二进制安装包,下载地址:https://github.com/Qihoo360/Quicksql/releases;
- 进入conf目录,在quicksql-env.sh中配置环境变量;
$ tar -zxvf ./quicksql-release-bin.tar.gz
$ cd quicksql-realease-0.7.1
$ vim ./conf/quicksql-env.sh #Set Your Basic Environment.
进入bin目录,执行quicksql-example脚本。(这里使用了内嵌Elasticsearch Server与Csv数据源作一个关联过滤)
$ ./bin/quicksql-example.sh com.qihoo.qsql.CsvJoinWithEsExample #换成选项型,并能打印SQL语句
如果能够显示以下结果,说明环境构建完毕,可以尝试新的操作。
+------+-------+----------+--------+------+-------+------+
|deptno| name| city|province|digest| type|stu_id|
+------+-------+----------+--------+------+-------+------+
| 40|Scholar| BROCKTON| MA| 59498|Scholar| null|
| 45| Master| CONCORD| NH| 34035| Master| null|
| 40|Scholar|FRAMINGHAM| MA| 65046|Scholar| null|
+------+-------+----------+--------+------+-------+------+
在Quicksql上运行查询前需要将连接信息以及表、字段信息采集入库。
默认元数据库使用Sqlite,切换元数据库的方式参考部署指南,Sqlite可以使用以下方式访问:
$ cd ./metastore/linux-x86/
$ sqlite3 ../schema.db
SQLite version 3.6.20
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> .tables
COLUMNS DATABASE_PARAMS DBS TBLS
sqlite> SELECT TBLS.DB_ID, TBL_NAME, NAME FROM TBLS INNER JOIN DBS ON TBLS.DB_ID = DBS.DB_ID;
+------+---------------+-----------+
| DB_ID| TBL_NAME| DB_NAME|
+------+---------------+-----------+
| 1| call_center| BROCKTON|
| 2| catalog_page| CONCORD|
| 3| catalog_sales| FRAMINGHAM|
+------+---------------+-----------+
当然,我们并不需要手工去插入元数据!
Quicksql提供了众多标准数据源的采集脚本,通过脚本批量拉取元数据。
目前支持通过脚本录入元数据的数据源有Hive, MySQL, Kylin, Elasticsearch, Oracle,Postgresql,Gbase-8s, MongoDB。
执行方式如下(注意:-r 参数可以使用LIKE语法,['%': 全部匹配,'_': 占位匹配,'?': 可选匹配])
$ ./bin/metadata-extract.sh -p "<SCHEMA-JSON>" -d "<DATA-SOURCE>" -r "<TABLE-NAME-REGEX>"
(详细的SCHEMA-JSON格式参考页末)
使用示例
从MySQL数据库中采集元数据
$ ./metadata-extract.sh -p "{\"jdbcDriver\": \"com.mysql.jdbc.Driver\", \"jdbcUrl\": \"jdbc:mysql://localhost:3306/db\", \"jdbcUser\": \"user\",\"jdbcPassword\": \"pass\"}" -d "mysql" -r "my_table"
从Elasticsearch存储中采集元数据
(esName为逻辑名称,是某个es的唯一标识,作为库名, index作为表名)
$ ./metadata-extract.sh -p "{\"esNodes\": \"192.168.1.1\",\"esPort\": \"9090\",\"esUser\": \"user\",\"esPass\": \"pass\",\"esName\": \"esTest\"}" -d "es" -r "index"
从Mongodb存储中采集元数据
$ ./metadata-extract.sh -p "{\"host\": \"192.168.1.1\", \"port\": \"27017\", \"authMechanism\": \"SCRAM-SHA-1\",
\"userName\": \"admin\",\"password\": \"admin\",\"dataBaseName\": \"test\",\"collectionName\":\"products\"}" -d "mongo" -r "products"
从PostgreSQL存储中采集元数据
$ ./metadata-extract.sh -p "{\"jdbcDriver\": \"org.postgresql.Driver\", \"jdbcUrl\": \"jdbc:postgresql://localhost:5432/testDb/qsql_test?currentSchema=testSchema\",
\"jdbcUser\": \"user\",\"jdbcPassword\": \"pass\"}" -d "postgresql" -r "my_table"
从ClickHouse数据库中采集元数据
$ ./metadata-extract.sh -p "{\"jdbcDriver\": \"ru.yandex.clickhouse.ClickHouseDriver\", \"jdbcUrl\": \"jdbc:clickhouse://localhost:8123/db\", \"jdbcUser\": \"default\",\"jdbcPassword\": \"\"}" -d "clickhouse" -r "my_table"
采集成功后将返回
1970-01-01 15:09:43,119 [main] INFO - Connecting server.....
1970-01-01 15:09:44,000 [main] INFO - Connected successfully!!
1970-01-01 15:09:44,121 [main] INFO - Successfully collected metadata for 2 tables!!
1970-01-01 15:09:45,622 [main] INFO - [my_table, my_type]!!
连接信息
常见数据源采集的JSON结构如下
##MySQL
{
"jdbcDriver": "com.mysql.jdbc.Driver",
"jdbcUrl": "jdbc:mysql://localhost:3306/db",
"jdbcUser": "USER",
"jdbcPassword": "PASSWORD"
}
##Oracle
{
"jdbcDriver": "oracle.jdbc.driver.OracleDriver",
"jdbcUrl": "jdbc:oracle:thin:@localhost:1521/namespace",
"jdbcUser": "USER",
"jdbcPassword": "PASSWORD"
}
##Elasticsearch
{
"esNodes": "192.168.1.1",
"esPort": "9000",
"esUser": "USER",
"esPass": "PASSWORD",
"esName": "esTest"
}
##Hive(Hive元数据存在MySQL中)
{
"jdbcDriver": "com.mysql.jdbc.Driver",
"jdbcUrl": "jdbc:mysql://localhost:3306/db",
"jdbcUser": "USER",
"jdbcPassword": "PASSWORD",
"dbName": "hive_db"
}
##Hive-Jdbc(Hive元数据通过Jdbc访问 )
{
"jdbcDriver": "org.apache.hive.jdbc.HiveDriver",
"jdbcUrl": "jdbc:hive2://localhost:7070/learn_kylin",
"jdbcUser": "USER",
"jdbcPassword": "PASSWORD",
"dbName": "default"
}
##Kylin
{
"jdbcDriver": "org.apache.kylin.jdbc.Driver",
"jdbcUrl": "jdbc:kylin://localhost:7070/learn_kylin",
"jdbcUser": "ADMIN",
"jdbcPassword": "KYLIN",
"dbName": "default"
}
##Mongodb
{
"host": "192.168.1.1",
"port": "27017",
"dataBaseName": "test",
"authMechanism": "SCRAM-SHA-1",
"userName": "admin",
"password": "admin",
"collectionName": "products"
}
##PostgreSQL
{
"jdbcDriver": "org.postgresql.Driver",
"jdbcUrl": "jdbc:postgresql://localhost:3306/testDb?currentSchema=testSchema",
"jdbcUser": "USER",
"jdbcPassword": "PASSWORD"
}
##ClickHouse
{
"jdbcDriver": "ru.yandex.clickhouse.ClickHouseDriver",
"jdbcUrl": "jdbc:clickhouse://localhost:8123/db",
"jdbcUser": "default",
"jdbcPassword": ""
}
注意:Shell中双引号是特殊字符,传JSON参数时需要做转义!!
我们也支持在不进行预制元数据,客户端通过jdbc api进行动态拼接元数据传递查询,详情可见下方JDBC应用接入schemaPath配置。
从命令行查询是Quicksql提供的最基本的查询方式之一。
像Hive和MySQL一样,使用quicksql.sh -e "YOUR SQL"
就可以完成查询,结果集将打印在终端上。
使用示例
- 一个简单的查询,将在Quicksql内核中被执行;
$ ./bin/quicksql.sh -e "SELECT 1"
想让它跑在Spark或Flink计算引擎上?可以使用runner参数;
$ ./bin/quicksql.sh -e "SELECT 1" --runner spark|flink
- 一个Elasticsearch数据源查询,将由Quicksql建立RestClient连接执行;
$ ./bin/quicksql.sh -e "SELECT approx_count_distinct(city), state FROM geo_mapping GROUP BY state LIMIT 10"
想让计算结果落地到存储?可以尝试INSERT INTO语法:
$ ./bin/quicksql.sh -e "INSERT INTO \`hdfs://cluster:9000/hello/world\` IN HDFS SELECT approx_count_distinct(city), state FROM geo_mapping GROUP BY state LIMIT 10"
其他参数
以上实例提供了基本的查询方式,如果对计算引擎需要指定其他参数可以参考下表:
Property Name | Default | Meaning |
---|---|---|
-e | -- | 配置查询的SQL语句,查询时必填。 |
-h|--help | -- | 命令参数的详细描述 |
--runner | dynamic | 设置执行器类型,包括 dynamic, jdbc, spark, flink |
--master | yarn-client | 设置引擎执行模式 |
--worker_memory | 1G | 执行器的内存大小配置 |
--driver_memory | 3G | 控制器的内存大小配置 |
--worker_num | 20 | 执行器的并行度 |
注意:
(1) 在quicksql-env.sh 中可以设置runner、master、worker_memory等参数的默认值;
(2) 在非分布式执行中,即使设置了master、worker_memory等参数也不会生效;
Quicksql支持使用Client/Server模式的JDBC连接进行查询,用户的应用可以通过引入Driver包与Server建立连接进行联邦查询。
启动Server
$ ./bin/quicksql-server.sh start -P 5888 -R spark -M yarn-client
启动参数包括start|stop|restart|status,-P/-R/-M为可选项,分别对应端口号,执行引擎和任务调度方式,
-P:指定server端口号,默认为5888
-R:指定执行引擎,支持Spark/Flink
-M:指定spark任务资源调度方式,yarn-client或yarn-cluster等,默认为local[1]
应用接入
项目手动加入Quicksql driver包 qsql-client-0.7.1.jar,下载地址:https://github.com/Qihoo360/Quicksql/releases;
Java代码示例:
public static void main(String[] args) throws SQLException, ClassNotFoundException {
Class.forName("com.qihoo.qsql.client.Driver"); //注入Drvier
Properties properties = new Properties();
properties.setProperty("runner","jdbc");
String url = "jdbc:quicksql:url=http://localhost:5888";
Connection connection = DriverManager.getConnection(url,properties);
Statement pS = connection.createStatement();
String sql = "select * from (values ('a', 1), ('b', 2))";
ResultSet rs = pS.executeQuery(sql);
while (rs.next()) {
System.out.println(rs.getString(1));
System.out.println(rs.getString(2));
}
rs.close();
pS.close();
}
-
注入quicksql Driver :com.qihoo.qsql.client.Driver
-
连接server的url : jdbc:quicksql:url=http:// + server服务器域名或ip地址 + server启动端口号(在server的日志文件 里有url信息)
-
其他操作与普通jdbc查询相同,包括Connection, Statement,ResultSet,ResultSetMetaData等类的操作,以及结果的遍历。
-
properties 配置项包含参数
runner:指定执行引擎, 包括 dynamic, jdbc, spark, flink,可不写,quicksql会自动适配合适的执行引擎。
acceptedResultsNum : 执行查询返回数据的最大条数
appName:启动的spark/flink实例名
responseUrl:查询落地hdfs时,可配置响应接口,数据落地完毕后Quicksql就采用http post请求返回响应,参数:respose,1 为成功,0 为失败,message:错误信息,若成功则为空
schemaPath:元数据json传递。
-
hive:
{ "schemas": [{ "type": "custom", "name": "test_database", "factory": "com.qihoo.qsql.org.apache.calcite.adapter.hive.HiveSchemaFactory", "tables": [{ "name": "test_table", "factory": "com.qihoo.qsql.org.apache.calcite.adapter.hive.HiveTableFactory", "operand": { "dbName": "test_database", "tableName": "test_table", "cluster": "default" }, "columns": [{ "name": "id:bigint" }, { "name": "name:bigint" }] }] }] }
-
mysql:
{ "schemas": [{ "type": "custom", "name": "test_database", "factory": "com.qihoo.qsql.org.apache.calcite.adapter.custom.JdbcSchemaFactory", "tables": [{ "name": "test_table", "factory": "com.qihoo.qsql.org.apache.calcite.adapter.custom.JdbcTableFactory", "operand": { "dbName": "test_database", "tableName": "test_table", "dbType": "mysql", "jdbcDriver": "com.mysql.jdbc.Driver", "jdbcUrl": "jdbc:mysql://127.0.0.1:3306/test_database", "jdbcUser": "test", "jdbcPassword": "test" }, "columns": [{ "name": "id:int" }, { "name": "count:int" }] }] }] }
-
elasticsearch:
{ "schemas": [{ "type": "custom", "name": "test", "factory": "com.qihoo.qsql.org.apache.calcite.adapter.elasticsearch.ElasticsearchCustomSchemaFactory", "operand": { "coordinates": "{'127.0.0.1': 9200}", "userConfig": "{'bulk.flush.max.actions': 10, 'bulk.flush.max.size.mb':1,'esUser':test,'esPass':test}", "index": "test_index" }, "tables": [{ "name": "test_table", "factory": "com.qihoo.qsql.org.apache.calcite.adapter.elasticsearch.ElasticsearchTableFactory", "operand": { "dbName": "test", "tableName": "test_table", "esNodes": "127.0.0.1", "esPort": "9200", "esUser": "test", "esPass": "test", "esName": "test", "esScrollNum": "1" }, "columns": [{ "name": "id:bigint" }, { "name": "name:string" }] }] }] }
-
mysql和hive混合查询
{ "schemas": [{ "type": "custom", "name": "test_database", "factory": "com.qihoo.qsql.org.apache.calcite.adapter.hive.HiveSchemaFactory", "tables": [{ "name": "test_table", "factory": "com.qihoo.qsql.org.apache.calcite.adapter.hive.HiveTableFactory", "operand": { "dbName": "test_database", "tableName": "test_table", "cluster": "default" }, "columns": [{ "name": "id:bigint" }, { "name": "count:bigint" } ] }] }, { "type": "custom", "name": "test_database", "factory": "com.qihoo.qsql.org.apache.calcite.adapter.custom.JdbcSchemaFactory", "tables": [{ "name": "test_table", "factory": "com.qihoo.qsql.org.apache.calcite.adapter.custom.JdbcTableFactory", "operand": { "dbName": "test_database", "tableName": "test_table", "dbType": "mysql", "jdbcDriver": "com.mysql.jdbc.Driver", "jdbcUrl": "jdbc:mysql://127.0.0.1:3306/test", "jdbcUser": "test", "jdbcPassword": "test" }, "columns": [{ "name": "id:int" }, { "name": "name:STRING" } ] }] } ] }
-