Skip to content

Latest commit

 

History

History
472 lines (379 loc) · 15.4 KB

getting-started.md

File metadata and controls

472 lines (379 loc) · 15.4 KB

English|中文

Tutorials

包含启动项目和运行范例的流程引导

Setup on Linux\MacOS

在Linux\MacOS上 运行Quicksql非常简单,但需要确保环境预置完整,依赖的环境有:

· Java >= 1.8

· Spark >= 2.3 (必选,未来作为可选)

· Flink >= 1.9 (可选)

  1. 下载并解压二进制安装包,下载地址:https://github.com/Qihoo360/Quicksql/releases
  2. 进入conf目录,在quicksql-env.sh中配置环境变量;
$ tar -zxvf ./quicksql-release-bin.tar.gz
$ cd quicksql-realease-0.7.1
$ vim ./conf/quicksql-env.sh #Set Your Basic Environment.

运行样例查询

进入bin目录,执行quicksql-example脚本。(这里使用了内嵌Elasticsearch Server与Csv数据源作一个关联过滤)

$ ./bin/quicksql-example.sh com.qihoo.qsql.CsvJoinWithEsExample #换成选项型,并能打印SQL语句

如果能够显示以下结果,说明环境构建完毕,可以尝试新的操作。

+------+-------+----------+--------+------+-------+------+
|deptno|   name|      city|province|digest|   type|stu_id|
+------+-------+----------+--------+------+-------+------+
|    40|Scholar|  BROCKTON|      MA| 59498|Scholar|  null|
|    45| Master|   CONCORD|      NH| 34035| Master|  null|
|    40|Scholar|FRAMINGHAM|      MA| 65046|Scholar|  null|
+------+-------+----------+--------+------+-------+------+

运行真实查询

在Quicksql上运行查询前需要将连接信息以及表、字段信息采集入库。

默认元数据库使用Sqlite,切换元数据库的方式参考部署指南,Sqlite可以使用以下方式访问:

$ cd ./metastore/linux-x86/
$ sqlite3 ../schema.db
SQLite version 3.6.20
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> .tables
COLUMNS    DATABASE_PARAMS    DBS    TBLS  
sqlite> SELECT TBLS.DB_ID, TBL_NAME, NAME  FROM TBLS INNER JOIN DBS ON TBLS.DB_ID = DBS.DB_ID;
+------+---------------+-----------+
| DB_ID|  	   TBL_NAME|    DB_NAME|
+------+---------------+-----------+
|     1|    call_center|   BROCKTON|
|     2|   catalog_page|    CONCORD|
|     3|  catalog_sales| FRAMINGHAM|
+------+---------------+-----------+

当然,我们并不需要手工去插入元数据!

Quicksql提供了众多标准数据源的采集脚本,通过脚本批量拉取元数据。

目前支持通过脚本录入元数据的数据源有Hive, MySQL, Kylin, Elasticsearch, Oracle,Postgresql,Gbase-8s, MongoDB

执行方式如下(注意:-r 参数可以使用LIKE语法,['%': 全部匹配,'_': 占位匹配,'?': 可选匹配])

$ ./bin/metadata-extract.sh -p "<SCHEMA-JSON>" -d "<DATA-SOURCE>" -r "<TABLE-NAME-REGEX>"

(详细的SCHEMA-JSON格式参考页末)

使用示例

MySQL数据库中采集元数据

$ ./metadata-extract.sh -p "{\"jdbcDriver\": \"com.mysql.jdbc.Driver\", \"jdbcUrl\": \"jdbc:mysql://localhost:3306/db\", \"jdbcUser\": \"user\",\"jdbcPassword\": \"pass\"}" -d "mysql" -r "my_table"

Elasticsearch存储中采集元数据

(esName为逻辑名称,是某个es的唯一标识,作为库名, index作为表名)
$ ./metadata-extract.sh -p "{\"esNodes\": \"192.168.1.1\",\"esPort\": \"9090\",\"esUser\": \"user\",\"esPass\": \"pass\",\"esName\": \"esTest\"}" -d "es" -r "index"

Mongodb存储中采集元数据

$ ./metadata-extract.sh -p "{\"host\": \"192.168.1.1\", \"port\": \"27017\", \"authMechanism\": \"SCRAM-SHA-1\",
\"userName\": \"admin\",\"password\": \"admin\",\"dataBaseName\": \"test\",\"collectionName\":\"products\"}" -d "mongo" -r "products"

PostgreSQL存储中采集元数据

$ ./metadata-extract.sh -p "{\"jdbcDriver\": \"org.postgresql.Driver\", \"jdbcUrl\": \"jdbc:postgresql://localhost:5432/testDb/qsql_test?currentSchema=testSchema\",
 \"jdbcUser\": \"user\",\"jdbcPassword\": \"pass\"}" -d "postgresql" -r "my_table"

ClickHouse数据库中采集元数据

$ ./metadata-extract.sh -p "{\"jdbcDriver\": \"ru.yandex.clickhouse.ClickHouseDriver\", \"jdbcUrl\": \"jdbc:clickhouse://localhost:8123/db\", \"jdbcUser\": \"default\",\"jdbcPassword\": \"\"}" -d "clickhouse" -r "my_table"

采集成功后将返回

1970-01-01 15:09:43,119 [main] INFO  - Connecting server.....
1970-01-01 15:09:44,000 [main] INFO  - Connected successfully!!
1970-01-01 15:09:44,121 [main] INFO  - Successfully collected metadata for 2 tables!!
1970-01-01 15:09:45,622 [main] INFO  - [my_table, my_type]!!

连接信息

常见数据源采集的JSON结构如下

##MySQL
{
	"jdbcDriver": "com.mysql.jdbc.Driver",
	"jdbcUrl": "jdbc:mysql://localhost:3306/db",
	"jdbcUser": "USER",
	"jdbcPassword": "PASSWORD"
}
##Oracle
{
	"jdbcDriver": "oracle.jdbc.driver.OracleDriver",
	"jdbcUrl": "jdbc:oracle:thin:@localhost:1521/namespace",
	"jdbcUser": "USER",
	"jdbcPassword": "PASSWORD" 
}
##Elasticsearch
{
	"esNodes": "192.168.1.1",
	"esPort": "9000",
	"esUser": "USER",
	"esPass": "PASSWORD",
	"esName": "esTest"
}
##Hive(Hive元数据存在MySQL中)
{
	"jdbcDriver": "com.mysql.jdbc.Driver",
	"jdbcUrl": "jdbc:mysql://localhost:3306/db",
	"jdbcUser": "USER",
	"jdbcPassword": "PASSWORD",
	"dbName": "hive_db"
}
##Hive-Jdbc(Hive元数据通过Jdbc访问 )
{
	"jdbcDriver": "org.apache.hive.jdbc.HiveDriver",
	"jdbcUrl": "jdbc:hive2://localhost:7070/learn_kylin",
	"jdbcUser": "USER",
	"jdbcPassword": "PASSWORD",
	"dbName": "default"
}
##Kylin
{
	"jdbcDriver": "org.apache.kylin.jdbc.Driver",
	"jdbcUrl": "jdbc:kylin://localhost:7070/learn_kylin",
	"jdbcUser": "ADMIN",
	"jdbcPassword": "KYLIN",
	"dbName": "default"
}
##Mongodb
{
	"host": "192.168.1.1",
	"port": "27017",
	"dataBaseName": "test",
	"authMechanism": "SCRAM-SHA-1",
	"userName": "admin",
	"password": "admin",
	"collectionName": "products"
}
##PostgreSQL
{
	"jdbcDriver": "org.postgresql.Driver",
	"jdbcUrl": "jdbc:postgresql://localhost:3306/testDb?currentSchema=testSchema",
	"jdbcUser": "USER",
	"jdbcPassword": "PASSWORD"
}
##ClickHouse
{
	"jdbcDriver": "ru.yandex.clickhouse.ClickHouseDriver",
	"jdbcUrl": "jdbc:clickhouse://localhost:8123/db",
	"jdbcUser": "default",
	"jdbcPassword": ""
}

注意:Shell中双引号是特殊字符,传JSON参数时需要做转义!!

我们也支持在不进行预制元数据,客户端通过jdbc api进行动态拼接元数据传递查询,详情可见下方JDBC应用接入schemaPath配置。

从命令行提交查询

从命令行查询是Quicksql提供的最基本的查询方式之一。

像Hive和MySQL一样,使用quicksql.sh -e "YOUR SQL"就可以完成查询,结果集将打印在终端上。

使用示例

  1. 一个简单的查询,将在Quicksql内核中被执行;
$ ./bin/quicksql.sh -e "SELECT 1"

想让它跑在Spark或Flink计算引擎上?可以使用runner参数;

$ ./bin/quicksql.sh -e "SELECT 1" --runner spark|flink
  1. 一个Elasticsearch数据源查询,将由Quicksql建立RestClient连接执行;
$ ./bin/quicksql.sh -e "SELECT approx_count_distinct(city), state FROM geo_mapping GROUP BY state LIMIT 10"

想让计算结果落地到存储?可以尝试INSERT INTO语法:

$ ./bin/quicksql.sh -e  "INSERT INTO \`hdfs://cluster:9000/hello/world\` IN HDFS SELECT approx_count_distinct(city), state FROM geo_mapping GROUP BY state LIMIT 10"

其他参数

以上实例提供了基本的查询方式,如果对计算引擎需要指定其他参数可以参考下表:

Property Name Default Meaning
-e -- 配置查询的SQL语句,查询时必填。
-h|--help -- 命令参数的详细描述
--runner dynamic 设置执行器类型,包括 dynamic, jdbc, spark, flink
--master yarn-client 设置引擎执行模式
--worker_memory 1G 执行器的内存大小配置
--driver_memory 3G 控制器的内存大小配置
--worker_num 20 执行器的并行度

注意:

​ (1) 在quicksql-env.sh 中可以设置runner、master、worker_memory等参数的默认值;

​ (2) 在非分布式执行中,即使设置了master、worker_memory等参数也不会生效;

从应用提交查询

Quicksql支持使用Client/Server模式的JDBC连接进行查询,用户的应用可以通过引入Driver包与Server建立连接进行联邦查询。

Server端

启动Server

$ ./bin/quicksql-server.sh start -P 5888 -R spark -M yarn-client

启动参数包括start|stop|restart|status,-P/-R/-M为可选项,分别对应端口号,执行引擎和任务调度方式,

-P:指定server端口号,默认为5888

-R:指定执行引擎,支持Spark/Flink

-M:指定spark任务资源调度方式,yarn-client或yarn-cluster等,默认为local[1]

Client端

应用接入

项目手动加入Quicksql driver包 qsql-client-0.7.1.jar,下载地址:https://github.com/Qihoo360/Quicksql/releases

Java代码示例:

 public static void main(String[] args) throws SQLException, ClassNotFoundException {
        Class.forName("com.qihoo.qsql.client.Driver"); //注入Drvier

        Properties properties = new Properties();
        properties.setProperty("runner","jdbc");
        String url = "jdbc:quicksql:url=http://localhost:5888";
        Connection connection = DriverManager.getConnection(url,properties);
        Statement pS = connection.createStatement();
        String sql = "select * from (values ('a', 1), ('b', 2))";
        ResultSet rs =  pS.executeQuery(sql);
        while (rs.next()) {
            System.out.println(rs.getString(1));
            System.out.println(rs.getString(2));
        }
        rs.close();
        pS.close();
}
  1. 注入quicksql Driver :com.qihoo.qsql.client.Driver

  2. 连接server的url : jdbc:quicksql:url=http:// + server服务器域名或ip地址 + server启动端口号(在server的日志文件 里有url信息)

  3. 其他操作与普通jdbc查询相同,包括Connection, Statement,ResultSet,ResultSetMetaData等类的操作,以及结果的遍历。

  4. properties 配置项包含参数

    ​ runner:指定执行引擎, 包括 dynamic, jdbc, spark, flink,可不写,quicksql会自动适配合适的执行引擎。

    ​acceptedResultsNum : 执行查询返回数据的最大条数

    appName:启动的spark/flink实例名

    responseUrl:查询落地hdfs时,可配置响应接口,数据落地完毕后Quicksql就采用http post请求返回响应,参数:respose,1 为成功,0 为失败,message:错误信息,若成功则为空

    schemaPath:元数据json传递。

    • ​ hive:

      {
               	"schemas": [{
               		"type": "custom",
               		"name": "test_database",
               		"factory": "com.qihoo.qsql.org.apache.calcite.adapter.hive.HiveSchemaFactory",
               		"tables": [{
               			"name": "test_table",
               			"factory": "com.qihoo.qsql.org.apache.calcite.adapter.hive.HiveTableFactory",
               			"operand": {
               				"dbName": "test_database",
               				"tableName": "test_table",
               				"cluster": "default"
               			},
               			"columns": [{
               				"name": "id:bigint"
               			}, {
               				"name": "name:bigint"
               			}]
               		}]
               	}]
               }
      
    • mysql:

      {
                	"schemas": [{
                		"type": "custom",
                		"name": "test_database",
                		"factory": "com.qihoo.qsql.org.apache.calcite.adapter.custom.JdbcSchemaFactory",
                		"tables": [{
                			"name": "test_table",
                			"factory": "com.qihoo.qsql.org.apache.calcite.adapter.custom.JdbcTableFactory",
                			"operand": {
                				"dbName": "test_database",
                				"tableName": "test_table",
                				"dbType": "mysql",
                				"jdbcDriver": "com.mysql.jdbc.Driver",
                				"jdbcUrl": "jdbc:mysql://127.0.0.1:3306/test_database",
                				"jdbcUser": "test",
                				"jdbcPassword": "test"
                			},
                			"columns": [{
                				"name": "id:int"
                			}, {
                				"name": "count:int"
                			}]
                		}]
                	}]
                }
      
    • elasticsearch:

      {
          	"schemas": [{
          		"type": "custom",
          		"name": "test",
          		"factory": "com.qihoo.qsql.org.apache.calcite.adapter.elasticsearch.ElasticsearchCustomSchemaFactory",
          		"operand": {
          			"coordinates": "{'127.0.0.1': 9200}",
          			"userConfig": "{'bulk.flush.max.actions': 10, 'bulk.flush.max.size.mb':1,'esUser':test,'esPass':test}",
          			"index": "test_index"
          		},
          		"tables": [{
          			"name": "test_table",
          			"factory": "com.qihoo.qsql.org.apache.calcite.adapter.elasticsearch.ElasticsearchTableFactory",
          			"operand": {
          				"dbName": "test",
          				"tableName": "test_table",
          				"esNodes": "127.0.0.1",
          				"esPort": "9200",
          				"esUser": "test",
          				"esPass": "test",
          				"esName": "test",
          				"esScrollNum": "1"
          			},
          			"columns": [{
          				"name": "id:bigint"
          			}, {
          				"name": "name:string"
          			}]
          		}]
          	}]
          }
      
    • mysql和hive混合查询

      {
         	"schemas": [{
         			"type": "custom",
         			"name": "test_database",
         			"factory": "com.qihoo.qsql.org.apache.calcite.adapter.hive.HiveSchemaFactory",
         			"tables": [{
         				"name": "test_table",
         				"factory": "com.qihoo.qsql.org.apache.calcite.adapter.hive.HiveTableFactory",
         				"operand": {
         					"dbName": "test_database",
         					"tableName": "test_table",
         					"cluster": "default"
         				},
         				"columns": [{
         						"name": "id:bigint"
         					},
         					{
         						"name": "count:bigint"
         					}
         				]
         			}]
         		},
         		{
         			"type": "custom",
         			"name": "test_database",
         			"factory": "com.qihoo.qsql.org.apache.calcite.adapter.custom.JdbcSchemaFactory",
         			"tables": [{
         				"name": "test_table",
         				"factory": "com.qihoo.qsql.org.apache.calcite.adapter.custom.JdbcTableFactory",
         				"operand": {
         					"dbName": "test_database",
         					"tableName": "test_table",
         					"dbType": "mysql",
         					"jdbcDriver": "com.mysql.jdbc.Driver",
         					"jdbcUrl": "jdbc:mysql://127.0.0.1:3306/test",
         					"jdbcUser": "test",
         					"jdbcPassword": "test"
         				},
         				"columns": [{
         						"name": "id:int"
         					},
         					{
         						"name": "name:STRING"
         					}
         				]
         			}]
         		}
         	]
         }