Download the cracktree,[crackls315](Deepcrack: Learning hierarchi- cal convolutional features for crack detection.),stone331,crack537 dataset and the file follows the following structure.
|-- datasets
|-- crack315
|-- train
| |-- train.txt
| |--img
| | |--<crack1.jpg>
| |--gt
| | |--<crack1.bmp>
|-- valid
| |-- Valid_image
| |-- Lable_image
| |-- Valid_result
......
train.txt format
./dataset/crack315/img/crack1.jpg ./dataset/crack315/gt/crack1.bmp
./dataset/crack315/img/crack2.jpg ./dataset/crack315/gt/crack2.bmp
.....
Change the 'pretrain_dir','datasetName' and 'netName' in test.py
python test.py
Download the trained model.
|-- model
|-- <netname>
| |-- <trained_model.pkl>
......
dataset | Pre-trained Model |
---|---|
cracktree | Link |
crackls315 | Link |
stone331 | Link |
crack537 | Link |
|
- We thank the anonymous reviewers for valuable and inspiring comments and suggestions.
@InProceedings{Liu_2021_ICCV, author = {Liu, Huajun and Miao, Xiangyu and Mertz, Christoph and Xu, Chengzhong and Kong, Hui}, title = {CrackFormer: Transformer Network for Fine-Grained Crack Detection}, booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)}, month = {October}, year = {2021}, pages = {3783-3792} } @article{Liu2023CrackFormer, title={CrackFormer Network for Pavement Crack Segmentation}, author={Huajun Liu and Jing Yang and Xiangyu Miao and Christoph Mertz and Hui Kong}, journal={IEEE Transactions on Intelligent Transportation Systems}, volume={24}, number={9}, pages={9240-9252}, year={2023}, publisher={IEEE} }