Skip to content

Commit

Permalink
[pre-commit.ci] pre-commit suggestions (#958)
Browse files Browse the repository at this point in the history
* [pre-commit.ci] pre-commit suggestions

updates:
- [github.com/PyCQA/docformatter: v1.5.0 → v1.5.1](PyCQA/docformatter@v1.5.0...v1.5.1)
- [github.com/PyCQA/isort: 5.11.2 → 5.11.4](PyCQA/isort@5.11.2...5.11.4)

* config

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Jirka Borovec <[email protected]>
Co-authored-by: Jirka <[email protected]>
  • Loading branch information
3 people authored Mar 28, 2023
1 parent 679d728 commit 05c305b
Show file tree
Hide file tree
Showing 30 changed files with 13 additions and 49 deletions.
6 changes: 3 additions & 3 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ repos:
name: Upgrade code

- repo: https://github.com/PyCQA/docformatter
rev: v1.5.0
rev: v1.5.1
hooks:
- id: docformatter
args: [--in-place, --wrap-summaries=115, --wrap-descriptions=120]
Expand All @@ -45,12 +45,12 @@ repos:
exclude: CHANGELOG.md

- repo: https://github.com/PyCQA/isort
rev: 5.11.2
rev: 5.12.0
hooks:
- id: isort

- repo: https://github.com/psf/black
rev: 22.12.0
rev: 23.1.0
hooks:
- id: black
name: Format code
Expand Down
3 changes: 0 additions & 3 deletions pl_bolts/callbacks/data_monitor.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,6 @@

@under_review()
class DataMonitorBase(Callback):

supported_loggers = (
TensorBoardLogger,
WandbLogger,
Expand Down Expand Up @@ -113,7 +112,6 @@ def _is_logger_available(self, logger: LightningLoggerBase) -> bool:

@under_review()
class ModuleDataMonitor(DataMonitorBase):

GROUP_NAME_INPUT = "input"
GROUP_NAME_OUTPUT = "output"

Expand Down Expand Up @@ -199,7 +197,6 @@ def hook(_: Module, inp: Sequence, out: Sequence) -> None:

@under_review()
class TrainingDataMonitor(DataMonitorBase):

GROUP_NAME = "training_step"

def __init__(self, log_every_n_steps: int = None):
Expand Down
1 change: 0 additions & 1 deletion pl_bolts/datamodules/experience_source.py
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,6 @@ def runner(self, device: torch.device) -> Tuple[Experience]:

# step through each env
for env_idx, (env, action) in enumerate(zip(self.pool, actions)):

exp = self.env_step(env_idx, env, action)
history = self.histories[env_idx]
history.append(exp)
Expand Down
1 change: 0 additions & 1 deletion pl_bolts/datamodules/kitti_datamodule.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,6 @@

@under_review()
class KittiDataModule(LightningDataModule):

name = "kitti"

def __init__(
Expand Down
1 change: 0 additions & 1 deletion pl_bolts/datamodules/sklearn_datamodule.py
Original file line number Diff line number Diff line change
Expand Up @@ -117,7 +117,6 @@ def __init__(
*args,
**kwargs,
) -> None:

super().__init__(*args, **kwargs)
self.num_workers = num_workers
self.batch_size = batch_size
Expand Down
1 change: 0 additions & 1 deletion pl_bolts/datamodules/ssl_imagenet_datamodule.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,6 @@

@under_review()
class SSLImagenetDataModule(LightningDataModule): # pragma: no cover

name = "imagenet"

def __init__(
Expand Down
1 change: 0 additions & 1 deletion pl_bolts/datamodules/vision_datamodule.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,6 @@


class VisionDataModule(LightningDataModule):

EXTRA_ARGS: dict = {}
name: str = ""
#: Dataset class to use
Expand Down
1 change: 0 additions & 1 deletion pl_bolts/datasets/base_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,6 @@

@under_review()
class LightDataset(ABC, Dataset):

data: Tensor
targets: Tensor
normalize: tuple
Expand Down
3 changes: 0 additions & 3 deletions pl_bolts/datasets/ssl_amdim_datasets.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,6 @@ def generate_train_val_split(cls, examples, labels, pct_val):

cts = {x: 0 for x in range(nb_classes)}
for img, class_idx in zip(examples, labels):

# allow labeled
if cts[class_idx] < nb_val_images:
val_x.append(img)
Expand Down Expand Up @@ -60,7 +59,6 @@ def select_nb_imgs_per_class(cls, examples, labels, nb_imgs_in_val):

cts = {x: 0 for x in range(nb_classes)}
for img_name, class_idx in zip(examples, labels):

# allow labeled
if cts[class_idx] < nb_imgs_in_val:
labeled.append(img_name)
Expand All @@ -76,7 +74,6 @@ def select_nb_imgs_per_class(cls, examples, labels, nb_imgs_in_val):

@classmethod
def deterministic_shuffle(cls, x, y):

n = len(x)
idxs = list(range(0, n))
np.random.seed(1234)
Expand Down
10 changes: 3 additions & 7 deletions pl_bolts/losses/self_supervised_learning.py
Original file line number Diff line number Diff line change
Expand Up @@ -140,11 +140,8 @@ def forward(self, anchor_representations, positive_representations, mask_mat):

# trick 2: tanh clip
raw_scores = tanh_clip(raw_scores, clip_val=self.tclip)
"""
pos_scores includes scores for all the positive samples
neg_scores includes scores for all the negative samples, with
scores for positive samples set to the min score (-self.tclip here)
"""
"""pos_scores includes scores for all the positive samples neg_scores includes scores for all the negative
samples, with scores for positive samples set to the min score (-self.tclip here)"""
# ----------------------
# EXTRACT POSITIVE SCORES
# use the index mask to pull all the diagonals which are b1 x b1
Expand Down Expand Up @@ -337,8 +334,7 @@ def forward(self, anchor_maps, positive_maps):

regularizer = 0
losses = []
for (ai, pi) in self.map_indexes:

for ai, pi in self.map_indexes:
# choose a random map
if ai == -1:
ai = np.random.randint(0, len(anchor_maps))
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -113,7 +113,6 @@ def forward(self, x):
return self.model(x)

def training_step(self, batch, batch_idx):

images, targets = batch
targets = [{k: v for k, v in t.items()} for t in targets]

Expand Down
2 changes: 0 additions & 2 deletions pl_bolts/models/detection/retinanet/retinanet_module.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,6 @@
from pl_bolts.utils.warnings import warn_missing_pkg

if _TORCHVISION_AVAILABLE:

from torchvision.models.detection.retinanet import RetinaNet as torchvision_RetinaNet
from torchvision.models.detection.retinanet import RetinaNetHead, retinanet_resnet50_fpn
from torchvision.ops import box_iou
Expand Down Expand Up @@ -97,7 +96,6 @@ def forward(self, x):
return self.model(x)

def training_step(self, batch, batch_idx):

images, targets = batch
targets = [{k: v for k, v in t.items()} for t in targets]

Expand Down
1 change: 0 additions & 1 deletion pl_bolts/models/gans/pix2pix/pix2pix_module.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,6 @@ def _weights_init(m):
@under_review()
class Pix2Pix(LightningModule):
def __init__(self, in_channels, out_channels, learning_rate=0.0002, lambda_recon=200):

super().__init__()
self.save_hyperparameters()

Expand Down
1 change: 0 additions & 1 deletion pl_bolts/models/mnist_module.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,6 @@ class LitMNIST(LightningModule):
"""

def __init__(self, hidden_dim: int = 128, learning_rate: float = 1e-3, **kwargs: Any) -> None:

if not _TORCHVISION_AVAILABLE: # pragma: no cover
raise ModuleNotFoundError("You want to use `torchvision` which is not installed yet.")

Expand Down
8 changes: 7 additions & 1 deletion pl_bolts/models/rl/per_dqn_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -91,7 +91,13 @@ def train_batch(
states, actions, rewards, dones, new_states = samples

for idx, _ in enumerate(dones):
yield (states[idx], actions[idx], rewards[idx], dones[idx], new_states[idx],), indices[
yield (
states[idx],
actions[idx],
rewards[idx],
dones[idx],
new_states[idx],
), indices[
idx
], weights[idx]

Expand Down
1 change: 0 additions & 1 deletion pl_bolts/models/rl/reinforce_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -173,7 +173,6 @@ def train_batch(
"""

while True:

action = self.agent(self.state, self.device)

next_state, reward, done, _ = self.env.step(action[0])
Expand Down
1 change: 0 additions & 1 deletion pl_bolts/models/rl/vanilla_policy_gradient_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -132,7 +132,6 @@ def train_batch(
"""

while True:

action = self.agent(self.state, self.device)

next_state, reward, done, _ = self.env.step(action[0])
Expand Down
1 change: 0 additions & 1 deletion pl_bolts/models/self_supervised/byol/byol_module.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,6 @@ def __init__(
initial_tau: float = 0.996,
**kwargs: Any,
) -> None:

super().__init__()
self.save_hyperparameters(ignore="base_encoder")

Expand Down
2 changes: 0 additions & 2 deletions pl_bolts/models/self_supervised/byol/models.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,6 @@ class MLP(nn.Module):
"""

def __init__(self, input_dim: int = 2048, hidden_dim: int = 4096, output_dim: int = 256) -> None:

super().__init__()

self.model = nn.Sequential(
Expand Down Expand Up @@ -53,7 +52,6 @@ def __init__(
projector_hidden_dim: int = 4096,
projector_out_dim: int = 256,
) -> None:

super().__init__()

if isinstance(encoder, str):
Expand Down
1 change: 0 additions & 1 deletion pl_bolts/models/self_supervised/moco/moco2_module.py
Original file line number Diff line number Diff line change
Expand Up @@ -225,7 +225,6 @@ def forward(self, img_q, img_k, queue):

# compute key features
with torch.no_grad(): # no gradient to keys

# shuffle for making use of BN
if self._use_ddp(self.trainer):
img_k, idx_unshuffle = self._batch_shuffle_ddp(img_k)
Expand Down
2 changes: 0 additions & 2 deletions pl_bolts/models/self_supervised/simclr/transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,6 @@ class SimCLRTrainDataTransform:
def __init__(
self, input_height: int = 224, gaussian_blur: bool = True, jitter_strength: float = 1.0, normalize=None
) -> None:

if not _TORCHVISION_AVAILABLE: # pragma: no cover
raise ModuleNotFoundError("You want to use `transforms` from `torchvision` which is not installed yet.")

Expand Down Expand Up @@ -140,7 +139,6 @@ class SimCLRFinetuneTransform(SimCLRTrainDataTransform):
def __init__(
self, input_height: int = 224, jitter_strength: float = 1.0, normalize=None, eval_transform: bool = False
) -> None:

super().__init__(
normalize=normalize, input_height=input_height, gaussian_blur=None, jitter_strength=jitter_strength
)
Expand Down
1 change: 0 additions & 1 deletion pl_bolts/models/self_supervised/simsiam/simsiam_module.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,6 @@ def __init__(
exclude_bn_bias: bool = False,
**kwargs,
) -> None:

super().__init__()
self.save_hyperparameters(ignore="base_encoder")

Expand Down
1 change: 0 additions & 1 deletion pl_bolts/models/self_supervised/swav/transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -130,7 +130,6 @@ class SwAVFinetuneTransform:
def __init__(
self, input_height: int = 224, jitter_strength: float = 1.0, normalize=None, eval_transform: bool = False
) -> None:

self.jitter_strength = jitter_strength
self.input_height = input_height
self.normalize = normalize
Expand Down
1 change: 0 additions & 1 deletion pl_bolts/models/vision/unet.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,6 @@ def __init__(
features_start: int = 64,
bilinear: bool = False,
):

if num_layers < 1:
raise ValueError(f"num_layers = {num_layers}, expected: num_layers > 0")

Expand Down
3 changes: 0 additions & 3 deletions pl_bolts/utils/arguments.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,14 +90,11 @@ def gather_lit_args(cls: Any, root_cls: Optional[Any] = None) -> List[LitArg]:
arguments: List[LitArg] = []
argument_names = []
for obj in inspect.getmro(cls):

if obj is root_cls and len(arguments) > 0:
break

if issubclass(obj, root_cls):

default_params = inspect.signature(obj.__init__).parameters # type: ignore

for arg in default_params:
arg_type = default_params[arg].annotation
arg_default = default_params[arg].default
Expand Down
2 changes: 0 additions & 2 deletions tests/datamodules/test_experience_sources.py
Original file line number Diff line number Diff line change
Expand Up @@ -185,7 +185,6 @@ def test_source_is_done_2step_episode(self):
self.source.histories[0].append(self.exp1)

for idx, exp in enumerate(self.source.runner(self.device)):

self.assertTrue(isinstance(exp, tuple))

if idx == 0:
Expand All @@ -211,7 +210,6 @@ def test_source_is_done_metrics(self):
history += [self.exp1, self.exp2, self.exp2]

for idx, exp in enumerate(self.source.runner(self.device)):

if idx == n_steps - 1:
self.assertEqual(self.source._total_rewards[0], 1)
self.assertEqual(self.source.total_steps[0], 1)
Expand Down
1 change: 0 additions & 1 deletion tests/datasets/test_datasets.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,6 @@
@pytest.mark.parametrize("batch_size,num_samples", [(16, 100), (1, 0)])
def test_dummy_ds(catch_warnings, batch_size, num_samples):
if num_samples > 0:

ds = DummyDataset((1, 28, 28), (1,), num_samples=num_samples)
dl = DataLoader(ds, batch_size=batch_size)

Expand Down
1 change: 0 additions & 1 deletion tests/losses/test_rl_loss.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,6 @@

class TestRLLoss(TestCase):
def setUp(self) -> None:

self.state = torch.rand(32, 4, 84, 84)
self.next_state = torch.rand(32, 4, 84, 84)
self.action = torch.ones([32])
Expand Down
1 change: 0 additions & 1 deletion tests/models/rl/unit/test_agents.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,6 @@ def setUp(self) -> None:
self.value_agent = ValueAgent(self.net, self.env.action_space.n)

def test_value_agent(self):

action = self.value_agent(self.state, self.device)
self.assertIsInstance(action, list)
self.assertIsInstance(action[0], int)
Expand Down
2 changes: 0 additions & 2 deletions tests/utils/test_arguments.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,6 @@


class DummyParentModel(LightningModule):

name = "parent-model"

def __init__(self, a: int, b: str, c: str = "parent_model_c"):
Expand All @@ -19,7 +18,6 @@ def forward(self, x):


class DummyParentDataModule(LightningDataModule):

name = "parent-dm"

def __init__(self, d: str, c: str = "parent_dm_c"):
Expand Down

0 comments on commit 05c305b

Please sign in to comment.