-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add unit tests * pass r checks
- Loading branch information
Showing
21 changed files
with
665 additions
and
349 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -2,9 +2,9 @@ Package: gslnls | |
Type: Package | ||
Title: GSL Multi-Start Nonlinear Least-Squares Fitting | ||
Version: 1.4.0 | ||
Date: 2024-12-02 | ||
Date: 2025-01-01 | ||
Authors@R: person("Joris", "Chau", email = "[email protected]", role = c("aut", "cre")) | ||
Description: An R interface to nonlinear least-squares optimization with the GNU Scientific Library (GSL), see M. Galassi et al. (2009, ISBN:0954612078). The available trust region methods include the Levenberg-Marquardt algorithm with and without geodesic acceleration, the Steihaug-Toint conjugate gradient algorithm for large systems and several variants of Powell's dogleg algorithm. Multi-start optimization based on quasi-random samples is implemented using a modified version of the algorithm in Hickernell and Yuan (1997, OR Transactions). Bindings are provided to tune a number of parameters affecting the low-level aspects of the trust region algorithms. The interface mimics R's nls() function and returns model objects inheriting from the same class. | ||
Description: An R interface to nonlinear least-squares optimization with the GNU Scientific Library (GSL), see M. Galassi et al. (2009, ISBN:0954612078). The available trust region methods include the Levenberg-Marquardt algorithm with and without geodesic acceleration, the Steihaug-Toint conjugate gradient algorithm for large systems and several variants of Powell's dogleg algorithm. Multi-start optimization based on quasi-random samples is implemented using a modified version of the algorithm in Hickernell and Yuan (1997, OR Transactions). Robust nonlinear regression can be performed using various robust loss functions, in which case the optimization problem is solved by iterative reweighted least squares (IRLS). Bindings are provided to tune a number of parameters affecting the low-level aspects of the trust region algorithms. The interface mimics R's nls() function and returns model objects inheriting from the same class. | ||
BugReports: https://github.com/JorisChau/gslnls/issues | ||
URL: https://github.com/JorisChau/gslnls | ||
Depends: | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.