Skip to content

Emory-AIMS/PFA

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

76 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PFA

Getting Started

This is the source code of paper "Projected Federated Averaging with Heterogeneous Differential Privacy" (accepted by VLDB 2022).

Prerequisites

The essential packages for deploying the project:

  • Tensorflow 2.x

    pip install tensorflow-gpu
  • Tensorflow Privacy

    pip install tensorflow-privacy

    or

    git clone https://github.com/tensorflow/privacy

Installation

  • Clone the repo
    git clone https://github.com/Emory-AIMS/PFA.git

Usage

Note that we omit the basic arguments such as dataset, model, lr, etc. And default Values have been set for these arguments.

  • NP-FedAvg algorithm:
    python main.py --fedavg True
  • FedAvg with HDP algorithm:
    python main.py --dpsgd True --eps mixgauss1 --fedavg True
  • WeiAvg algorithm experiments
    python main.py --dpsgd True --eps mixgauss1 --weiavg True
  • PFA algorithm
    python main.py --dpsgd True --eps mixgauss1 --proj_wavg True --proj_dims 1 --lanczos_iter 256
  • PFA+ algorithm
    python main.py --dpsgd True --eps mixgauss1 --proj_wavg True --delay True --proj_dims 1 --lanczos_iter 256

Contact

Junxu Liu - [email protected]

Project Link: https://github.com/JunxuLiu/PFA

Acknowledgements

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%