Skip to content

7_Coastal Models

Daniel Buscombe edited this page Feb 25, 2023 · 4 revisions

These models have been made for the Seg2Map package for application of <=1m nadir and orthomosaic imagery

💾 Coast Train

  • Coast Train is a dataset for segmentation of images of coastal environments
  • Coast Train
  • dataset

Example labeled imagery:

2018-09-PelicanIsland-ortho-rgb-5cm_05_01_ID3_overlay chunk1_m_2808028_nw_17_1_20151017_multiband_canaveral_site116_ID3_overlay chunk1_m_3211714_se_11_1_20100503_multiband_ID1_overlay chunk1_m_4107022_nw_19_060_20180817_multiband_cape_cod_site191_ID3_overlay

2-class / Orthomosaic + NAIP imagery

Classes: 0. water

  1. other

Training curve for the best model:

ct_ortho_all_water_768_v6_trainhist_18

Some example validation outputs:

ct_ortho_all_water_768_v6_val_248 ct_ortho_all_water_768_v6_val_287 ct_ortho_all_water_768_v6_val_311 ct_ortho_all_water_768_v6_val_322

5-class / NAIP imagery

Classes: 0. water

  1. whitewater
  2. sediment
  3. bare terrain
  4. other terrain

Training curve for the best model:

ct_NAIP_5class_768_v5_trainhist_17

Some example validation outputs:

ct_NAIP_5class_768_v5_val_243 ct_NAIP_5class_768_v5_val_245 ct_NAIP_5class_768_v5_val_262 ct_NAIP_5class_768_v5_val_273

5-class SegFormer model / NAIP imagery

Classes: 0. water

  1. whitewater
  2. sediment
  3. bare terrain
  4. other terrain

Training curve for the best model:

Some example validation outputs:

ct_NAIP_5class_768_segformer_v3_val_55 ct_NAIP_5class_768_segformer_v3_val_60 ct_NAIP_5class_768_segformer_v3_val_79 ct_NAIP_5class_768_segformer_v3_val_117 ct_NAIP_5class_768_segformer_v3_val_121

8-class / NAIP imagery

Classes: 0. water

  1. whitewater
  2. sediment
  3. other_bare_natural_terrain
  4. marsh_vegetation
  5. terrestrial_vegetation
  6. agricultural
  7. development

Training curve for the best model:

ct_NAIP_8class_768_v5_trainhist_16

Some example validation outputs:

ct_NAIP_8class_768_v5_val_246 ct_NAIP_8class_768_v5_val_256 ct_NAIP_8class_768_v5_val_262 ct_NAIP_8class_768_v5_val_283

8-class SegFormer model / NAIP imagery

Classes: 0. water

  1. whitewater
  2. sediment
  3. other_bare_natural_terrain
  4. marsh_vegetation
  5. terrestrial_vegetation
  6. agricultural
  7. development

Training curve for the best model:

Some example validation outputs:

ct_NAIP_8class_768_segformer_v3_val_51 ct_NAIP_8class_768_segformer_v3_val_58 ct_NAIP_8class_768_segformer_v3_val_68 ct_NAIP_8class_768_segformer_v3_val_77 ct_NAIP_8class_768_segformer_v3_val_79 ct_NAIP_8class_768_segformer_v3_val_99

💾 Chesapeake

  • Chesapeake is a dataset for generic/coastal landuse/cover mapping on high-resolution orthomosaic imagery
  • Chesapeake Landcover (CCLC) / NAIP
  • 7 class dataset (water, tree canopy / forest, low vegetation / field, barren land, impervious (other), impervious (road), no data)
  • Robinson C, Hou L, Malkin K, Soobitsky R, Czawlytko J, Dilkina B, Jojic N. Large Scale High-Resolution Land Cover Mapping with Multi-Resolution Data. Proceedings of the 2019 Conference on Computer Vision and Pattern Recognition (CVPR 2019)
  • Classes:
  1. water
  2. tree_canopy_forest
  3. low_vegetation_field
  4. barren land
  5. impervious_other
  6. impervious_road
  7. no_data

Example labeled imagery

m_3607632_ne_18_1_naip-old-2_overlay m_3707549_ne_18_1_naip-old-1_overlay m_3707602_sw_18_1_naip-old-0_overlay m_3707626_nw_18_1_naip-old-2_overlay

Model for 7 classes, 512x512 imagery

Training curve for the best model:

ches_7class_naipRGB_512_v5_trainhist_24

Some example validation outputs:

ches_7class_naipRGB_512_v5_val_367 ches_7class_naipRGB_512_v5_val_445 ches_7class_naipRGB_512_v5_val_446 ches_7class_naipRGB_512_v5_val_447

Segformer model for 7 classes, 512x512 imagery

Training curve for the best model:

Some example validation outputs:

ches_7class_naipRGB_512_segformer_v3_val_245 ches_7class_naipRGB_512_segformer_v3_val_260 ches_7class_naipRGB_512_segformer_v3_val_280 ches_7class_naipRGB_512_segformer_v3_val_286 ches_7class_naipRGB_512_segformer_v3_val_319

💾 Barrier Islands

  • BarrierIslands is a dataset for segmentation of images of coastal barrier island environments
  • dataset
  • paper

Example labeled imagery

Model for 768x512 imagery

  • Zenodo release: forhcoming
  • model citation: forthcoming
  • segmentation zoo model name:

Training curve for the best model:

Some example validation outputs: