Copy from/to Parquet files in PostgreSQL!
pg_parquet
is a PostgreSQL extension that allows you to read and write Parquet files, which are located in S3
or file system
, from PostgreSQL via COPY TO/FROM
commands. It depends on Apache Arrow project to read and write Parquet files and pgrx project to extend PostgreSQL's COPY
command.
-- Copy a query result into Parquet in S3
COPY (SELECT * FROM table) TO 's3://mybucket/data.parquet' WITH (format 'parquet');
-- Load data from Parquet in S3
COPY table FROM 's3://mybucket/data.parquet' WITH (format 'parquet');
- Installation From Source
- Usage
- Object Store Support
- Copy Options
- Configuration
- Supported Types
- Postgres Support Matrix
After installing Postgres
, you need to set up rustup
, cargo-pgrx
to build the extension.
# install rustup
> curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh
# install cargo-pgrx
> cargo install cargo-pgrx
# configure pgrx
> cargo pgrx init --pg17 $(which pg_config)
# append the extension to shared_preload_libraries in ~/.pgrx/data-17/postgresql.conf
> echo "shared_preload_libraries = 'pg_parquet'" >> ~/.pgrx/data-17/postgresql.conf
# run cargo-pgrx to build and install the extension
> cargo pgrx run
# create the extension in the database
psql> "CREATE EXTENSION pg_parquet;"
There are mainly 3 things that you can do with pg_parquet
:
- You can export Postgres tables/queries to Parquet files,
- You can ingest data from Parquet files to Postgres tables,
- You can inspect the schema and metadata of Parquet files.
You can use PostgreSQL's COPY
command to read and write Parquet files. Below is an example of how to write a PostgreSQL table, with complex types, into a Parquet file and then to read the Parquet file content back into the same table.
-- create composite types
CREATE TYPE product_item AS (id INT, name TEXT, price float4);
CREATE TYPE product AS (id INT, name TEXT, items product_item[]);
-- create a table with complex types
CREATE TABLE product_example (
id int,
product product,
products product[],
created_at TIMESTAMP,
updated_at TIMESTAMPTZ
);
-- insert some rows into the table
insert into product_example values (
1,
ROW(1, 'product 1', ARRAY[ROW(1, 'item 1', 1.0), ROW(2, 'item 2', 2.0), NULL]::product_item[])::product,
ARRAY[ROW(1, NULL, NULL)::product, NULL],
now(),
'2022-05-01 12:00:00-04'
);
-- copy the table to a parquet file
COPY product_example TO '/tmp/product_example.parquet' (format 'parquet', compression 'gzip');
-- show table
SELECT * FROM product_example;
-- copy the parquet file to the table
COPY product_example FROM '/tmp/product_example.parquet';
-- show table
SELECT * FROM product_example;
You can call SELECT * FROM parquet.schema(<uri>)
to discover the schema of the Parquet file at given uri.
SELECT * FROM parquet.schema('/tmp/product_example.parquet') LIMIT 10;
uri | name | type_name | type_length | repetition_type | num_children | converted_type | scale | precision | field_id | logical_type
------------------------------+--------------+------------+-------------+-----------------+--------------+----------------+-------+-----------+----------+--------------
/tmp/product_example.parquet | arrow_schema | | | | 5 | | | | |
/tmp/product_example.parquet | id | INT32 | | OPTIONAL | | | | | 0 |
/tmp/product_example.parquet | product | | | OPTIONAL | 3 | | | | 1 |
/tmp/product_example.parquet | id | INT32 | | OPTIONAL | | | | | 2 |
/tmp/product_example.parquet | name | BYTE_ARRAY | | OPTIONAL | | UTF8 | | | 3 | STRING
/tmp/product_example.parquet | items | | | OPTIONAL | 1 | LIST | | | 4 | LIST
/tmp/product_example.parquet | list | | | REPEATED | 1 | | | | |
/tmp/product_example.parquet | element | | | OPTIONAL | 3 | | | | 5 |
/tmp/product_example.parquet | id | INT32 | | OPTIONAL | | | | | 6 |
/tmp/product_example.parquet | name | BYTE_ARRAY | | OPTIONAL | | UTF8 | | | 7 | STRING
(10 rows)
You can call SELECT * FROM parquet.metadata(<uri>)
to discover the detailed metadata of the Parquet file, such as column statistics, at given uri.
SELECT uri, row_group_id, row_group_num_rows, row_group_num_columns, row_group_bytes, column_id, file_offset, num_values, path_in_schema, type_name FROM parquet.metadata('/tmp/product_example.parquet') LIMIT 1;
uri | row_group_id | row_group_num_rows | row_group_num_columns | row_group_bytes | column_id | file_offset | num_values | path_in_schema | type_name
------------------------------+--------------+--------------------+-----------------------+-----------------+-----------+-------------+------------+----------------+-----------
/tmp/product_example.parquet | 0 | 1 | 13 | 842 | 0 | 0 | 1 | id | INT32
(1 row)
SELECT stats_null_count, stats_distinct_count, stats_min, stats_max, compression, encodings, index_page_offset, dictionary_page_offset, data_page_offset, total_compressed_size, total_uncompressed_size FROM parquet.metadata('/tmp/product_example.parquet') LIMIT 1;
stats_null_count | stats_distinct_count | stats_min | stats_max | compression | encodings | index_page_offset | dictionary_page_offset | data_page_offset | total_compressed_size | total_uncompressed_size
------------------+----------------------+-----------+-----------+--------------------+--------------------------+-------------------+------------------------+------------------+-----------------------+-------------------------
0 | | 1 | 1 | GZIP(GzipLevel(6)) | PLAIN,RLE,RLE_DICTIONARY | | 4 | 42 | 101 | 61
(1 row)
You can call SELECT * FROM parquet.file_metadata(<uri>)
to discover file level metadata of the Parquet file, such as format version, at given uri.
SELECT * FROM parquet.file_metadata('/tmp/product_example.parquet')
uri | created_by | num_rows | num_row_groups | format_version
------------------------------+------------+----------+----------------+----------------
/tmp/product_example.parquet | pg_parquet | 1 | 1 | 1
(1 row)
You can call SELECT * FROM parquet.kv_metadata(<uri>)
to query custom key-value metadata of the Parquet file at given uri.
SELECT uri, encode(key, 'escape') as key, encode(value, 'escape') as value FROM parquet.kv_metadata('/tmp/product_example.parquet');
uri | key | value
------------------------------+--------------+---------------------
/tmp/product_example.parquet | ARROW:schema | /////5gIAAAQAAAA ...
(1 row)
pg_parquet
supports reading and writing Parquet files from/to S3
and Azure Blob Storage
object stores.
Note
To be able to write into a object store location, you need to grant parquet_object_store_write
role to your current postgres user.
Similarly, to read from an object store location, you need to grant parquet_object_store_read
role to your current postgres user.
The simplest way to configure object storage is by creating the standard ~/.aws/credentials
and ~/.aws/config
files:
$ cat ~/.aws/credentials
[default]
aws_access_key_id = AKIAIOSFODNN7EXAMPLE
aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
$ cat ~/.aws/config
[default]
region = eu-central-1
Alternatively, you can use the following environment variables when starting postgres to configure the S3 client:
AWS_ACCESS_KEY_ID
: the access key ID of the AWS accountAWS_SECRET_ACCESS_KEY
: the secret access key of the AWS accountAWS_SESSION_TOKEN
: the session token for the AWS accountAWS_REGION
: the default region of the AWS accountAWS_ENDPOINT_URL
: the endpointAWS_SHARED_CREDENTIALS_FILE
: an alternative location for the credentials file (only via environment variables)AWS_CONFIG_FILE
: an alternative location for the config file (only via environment variables)AWS_PROFILE
: the name of the profile from the credentials and config file (default profile name isdefault
) (only via environment variables)AWS_ALLOW_HTTP
: allows http endpoints (only via environment variables)
Config source priority order is shown below:
- Environment variables,
- Config file.
Supported S3 uri formats are shown below:
- s3:// <bucket> / <path>
- https:// <bucket>.s3.amazonaws.com / <path>
- https:// s3.amazonaws.com / <bucket> / <path>
Supported authorization methods' priority order is shown below:
- Temporary session tokens by assuming roles,
- Long term credentials.
The simplest way to configure object storage is by creating the standard ~/.azure/config
file:
$ cat ~/.azure/config
[storage]
account = devstoreaccount1
key = Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ1OUzFT50uSRZ6IFsuFq2UVErCz4I6tq/K1SZFPTOtr/KBHBeksoGMGw==
Alternatively, you can use the following environment variables when starting postgres to configure the Azure Blob Storage client:
AZURE_STORAGE_ACCOUNT
: the storage account name of the Azure BlobAZURE_STORAGE_KEY
: the storage key of the Azure BlobAZURE_STORAGE_CONNECTION_STRING
: the connection string for the Azure Blob (overrides any other config)AZURE_STORAGE_SAS_TOKEN
: the storage SAS token for the Azure BlobAZURE_TENANT_ID
: the tenant id for client secret auth (only via environment variables)AZURE_CLIENT_ID
: the client id for client secret auth (only via environment variables)AZURE_CLIENT_SECRET
: the client secret for client secret auth (only via environment variables)AZURE_STORAGE_ENDPOINT
: the endpoint (only via environment variables)AZURE_CONFIG_FILE
: an alternative location for the config file (only via environment variables)AZURE_ALLOW_HTTP
: allows http endpoints (only via environment variables)
Config source priority order is shown below:
- Connection string (read from environment variable or config file),
- Environment variables,
- Config file.
Supported Azure Blob Storage uri formats are shown below:
- az:// <container> / <path>
- azure:// <container> / <path>
- https:// <account>.blob.core.windows.net / <container>
Supported authorization methods' priority order is shown below:
- Bearer token via client secret,
- Sas token,
- Storage key.
pg_parquet
supports the following options in the COPY TO
command:
format parquet
: you need to specify this option to read or write Parquet files which does not end with.parquet[.<compression>]
extension,row_group_size <int>
: the number of rows in each row group while writing Parquet files. The default row group size is122880
,row_group_size_bytes <int>
: the total byte size of rows in each row group while writing Parquet files. The default row group size bytes isrow_group_size * 1024
,compression <string>
: the compression format to use while writing Parquet files. The supported compression formats areuncompressed
,snappy
,gzip
,brotli
,lz4
,lz4raw
andzstd
. The default compression format issnappy
. If not specified, the compression format is determined by the file extension,compression_level <int>
: the compression level to use while writing Parquet files. The supported compression levels are only supported forgzip
,zstd
andbrotli
compression formats. The default compression level is6
forgzip (0-10)
,1
forzstd (1-22)
and1
forbrotli (0-11)
.
pg_parquet
supports the following options in the COPY FROM
command:
format parquet
: you need to specify this option to read or write Parquet files which does not end with.parquet[.<compression>]
extension,match_by <string>
: method to match Parquet file fields to PostgreSQL table columns. The available methods areposition
andname
. The default method isposition
. You can set it toname
to match the columns by their name rather than by their position in the schema (default). Match byname
is useful when field order differs between the Parquet file and the table, but their names match.
There is currently only one GUC parameter to enable/disable the pg_parquet
:
pg_parquet.enable_copy_hooks
: you can set this parameter toon
oroff
to enable or disable thepg_parquet
extension. The default value ison
.
pg_parquet
has rich type support, including PostgreSQL's primitive, array, and composite types. Below is the table of the supported types in PostgreSQL and their corresponding Parquet types.
PostgreSQL Type | Parquet Physical Type | Logical Type |
---|---|---|
bool |
BOOLEAN | |
smallint |
INT16 | |
integer |
INT32 | |
bigint |
INT64 | |
real |
FLOAT | |
oid |
INT32 | |
double |
DOUBLE | |
numeric (1) |
FIXED_LEN_BYTE_ARRAY(16) | DECIMAL(128) |
text |
BYTE_ARRAY | STRING |
json |
BYTE_ARRAY | STRING |
bytea |
BYTE_ARRAY | |
date (2) |
INT32 | DATE |
timestamp |
INT64 | TIMESTAMP_MICROS |
timestamptz (3) |
INT64 | TIMESTAMP_MICROS |
time |
INT64 | TIME_MICROS |
timetz (3) |
INT64 | TIME_MICROS |
geometry (4) |
BYTE_ARRAY |
PostgreSQL Type | Parquet Physical Type | Logical Type |
---|---|---|
composite |
GROUP | STRUCT |
array |
element's physical type | LIST |
crunchy_map (5) |
GROUP | MAP |
Warning
- (1)
numeric
type is written the smallest possible memory width to parquet file as follows:numeric(P <= 9, S)
is represented asINT32
withDECIMAL
logical typenumeric(9 < P <= 18, S)
is represented asINT64
withDECIMAL
logical typenumeric(18 < P <= 38, S)
is represented asFIXED_LEN_BYTE_ARRAY(9-16)
withDECIMAL
logical typenumeric(38 < P, S)
is represented asBYTE_ARRAY
withSTRING
logical typenumeric
is allowed by Postgres. (precision and scale not specified). These are represented by a default precision (38) and scale (9) instead of writing them as string. You get runtime error if your table tries to read or write a numeric value which is not allowed by the default precision and scale (29 integral digits before decimal point, 9 digits after decimal point).
- (2) The
date
type is represented according toUnix epoch
when writing to Parquet files. It is converted back according toPostgreSQL epoch
when reading from Parquet files. - (3) The
timestamptz
andtimetz
types are adjusted toUTC
when writing to Parquet files. They are converted back withUTC
timezone when reading from Parquet files. - (4) The
geometry
type is represented asBYTE_ARRAY
encoded asWKB
whenpostgis
extension is created. Otherwise, it is represented asBYTE_ARRAY
withSTRING
logical type. - (5)
crunchy_map
is dependent on functionality provided by Crunchy Bridge. Thecrunchy_map
type is represented asGROUP
withMAP
logical type whencrunchy_map
extension is created. Otherwise, it is represented asBYTE_ARRAY
withSTRING
logical type.
Warning
Any type that does not have a corresponding Parquet type will be represented, as a fallback mechanism, as BYTE_ARRAY
with STRING
logical type. e.g. enum
pg_parquet
supports the following PostgreSQL versions:
PostgreSQL Major Version | Supported |
---|---|
14 | ✅ |
15 | ✅ |
16 | ✅ |
17 | ✅ |