Skip to content

CrunchyData/pg_parquet

Repository files navigation

pg_parquet

Copy from/to Parquet files in PostgreSQL!

CI lints and tests codecov

pg_parquet is a PostgreSQL extension that allows you to read and write Parquet files, which are located in S3 or file system, from PostgreSQL via COPY TO/FROM commands. It depends on Apache Arrow project to read and write Parquet files and pgrx project to extend PostgreSQL's COPY command.

-- Copy a query result into Parquet in S3
COPY (SELECT * FROM table) TO 's3://mybucket/data.parquet' WITH (format 'parquet');

-- Load data from Parquet in S3
COPY table FROM 's3://mybucket/data.parquet' WITH (format 'parquet');

Quick Reference

Installation From Source

After installing Postgres, you need to set up rustup, cargo-pgrx to build the extension.

# install rustup
> curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

# install cargo-pgrx
> cargo install cargo-pgrx

# configure pgrx
> cargo pgrx init --pg17 $(which pg_config)

# append the extension to shared_preload_libraries in ~/.pgrx/data-17/postgresql.conf 
> echo "shared_preload_libraries = 'pg_parquet'" >> ~/.pgrx/data-17/postgresql.conf

# run cargo-pgrx to build and install the extension
> cargo pgrx run

# create the extension in the database
psql> "CREATE EXTENSION pg_parquet;"

Usage

There are mainly 3 things that you can do with pg_parquet:

  1. You can export Postgres tables/queries to Parquet files,
  2. You can ingest data from Parquet files to Postgres tables,
  3. You can inspect the schema and metadata of Parquet files.

COPY to/from Parquet files from/to Postgres tables

You can use PostgreSQL's COPY command to read and write Parquet files. Below is an example of how to write a PostgreSQL table, with complex types, into a Parquet file and then to read the Parquet file content back into the same table.

-- create composite types
CREATE TYPE product_item AS (id INT, name TEXT, price float4);
CREATE TYPE product AS (id INT, name TEXT, items product_item[]);

-- create a table with complex types
CREATE TABLE product_example (
    id int,
    product product,
    products product[],
    created_at TIMESTAMP,
    updated_at TIMESTAMPTZ
);

-- insert some rows into the table
insert into product_example values (
    1,
    ROW(1, 'product 1', ARRAY[ROW(1, 'item 1', 1.0), ROW(2, 'item 2', 2.0), NULL]::product_item[])::product,
    ARRAY[ROW(1, NULL, NULL)::product, NULL],
    now(),
    '2022-05-01 12:00:00-04'
);

-- copy the table to a parquet file
COPY product_example TO '/tmp/product_example.parquet' (format 'parquet', compression 'gzip');

-- show table
SELECT * FROM product_example;

-- copy the parquet file to the table
COPY product_example FROM '/tmp/product_example.parquet';

-- show table
SELECT * FROM product_example;

Inspect Parquet schema

You can call SELECT * FROM parquet.schema(<uri>) to discover the schema of the Parquet file at given uri.

SELECT * FROM parquet.schema('/tmp/product_example.parquet') LIMIT 10;
             uri              |     name     | type_name  | type_length | repetition_type | num_children | converted_type | scale | precision | field_id | logical_type 
------------------------------+--------------+------------+-------------+-----------------+--------------+----------------+-------+-----------+----------+--------------
 /tmp/product_example.parquet | arrow_schema |            |             |                 |            5 |                |       |           |          | 
 /tmp/product_example.parquet | id           | INT32      |             | OPTIONAL        |              |                |       |           |        0 | 
 /tmp/product_example.parquet | product      |            |             | OPTIONAL        |            3 |                |       |           |        1 | 
 /tmp/product_example.parquet | id           | INT32      |             | OPTIONAL        |              |                |       |           |        2 | 
 /tmp/product_example.parquet | name         | BYTE_ARRAY |             | OPTIONAL        |              | UTF8           |       |           |        3 | STRING
 /tmp/product_example.parquet | items        |            |             | OPTIONAL        |            1 | LIST           |       |           |        4 | LIST
 /tmp/product_example.parquet | list         |            |             | REPEATED        |            1 |                |       |           |          | 
 /tmp/product_example.parquet | element        |            |             | OPTIONAL        |            3 |                |       |           |        5 | 
 /tmp/product_example.parquet | id           | INT32      |             | OPTIONAL        |              |                |       |           |        6 | 
 /tmp/product_example.parquet | name         | BYTE_ARRAY |             | OPTIONAL        |              | UTF8           |       |           |        7 | STRING
(10 rows)

Inspect Parquet metadata

You can call SELECT * FROM parquet.metadata(<uri>) to discover the detailed metadata of the Parquet file, such as column statistics, at given uri.

SELECT uri, row_group_id, row_group_num_rows, row_group_num_columns, row_group_bytes, column_id, file_offset, num_values, path_in_schema, type_name FROM parquet.metadata('/tmp/product_example.parquet') LIMIT 1;
             uri              | row_group_id | row_group_num_rows | row_group_num_columns | row_group_bytes | column_id | file_offset | num_values | path_in_schema | type_name 
------------------------------+--------------+--------------------+-----------------------+-----------------+-----------+-------------+------------+----------------+-----------
 /tmp/product_example.parquet |            0 |                  1 |                    13 |             842 |         0 |           0 |          1 | id             | INT32
(1 row)
SELECT stats_null_count, stats_distinct_count, stats_min, stats_max, compression, encodings, index_page_offset, dictionary_page_offset, data_page_offset, total_compressed_size, total_uncompressed_size FROM parquet.metadata('/tmp/product_example.parquet') LIMIT 1;
 stats_null_count | stats_distinct_count | stats_min | stats_max |    compression     |        encodings         | index_page_offset | dictionary_page_offset | data_page_offset | total_compressed_size | total_uncompressed_size 
------------------+----------------------+-----------+-----------+--------------------+--------------------------+-------------------+------------------------+------------------+-----------------------+-------------------------
                0 |                      | 1         | 1         | GZIP(GzipLevel(6)) | PLAIN,RLE,RLE_DICTIONARY |                   |                      4 |               42 |                   101 |                      61
(1 row)

You can call SELECT * FROM parquet.file_metadata(<uri>) to discover file level metadata of the Parquet file, such as format version, at given uri.

SELECT * FROM parquet.file_metadata('/tmp/product_example.parquet')
             uri              | created_by | num_rows | num_row_groups | format_version 
------------------------------+------------+----------+----------------+----------------
 /tmp/product_example.parquet | pg_parquet |        1 |              1 | 1
(1 row)

You can call SELECT * FROM parquet.kv_metadata(<uri>) to query custom key-value metadata of the Parquet file at given uri.

SELECT uri, encode(key, 'escape') as key, encode(value, 'escape') as value FROM parquet.kv_metadata('/tmp/product_example.parquet');
             uri              |     key      |    value
------------------------------+--------------+---------------------
 /tmp/product_example.parquet | ARROW:schema | /////5gIAAAQAAAA ...
(1 row)

Object Store Support

pg_parquet supports reading and writing Parquet files from/to S3 and Azure Blob Storage object stores.

Note

To be able to write into a object store location, you need to grant parquet_object_store_write role to your current postgres user. Similarly, to read from an object store location, you need to grant parquet_object_store_read role to your current postgres user.

S3 Storage

The simplest way to configure object storage is by creating the standard ~/.aws/credentials and ~/.aws/config files:

$ cat ~/.aws/credentials
[default]
aws_access_key_id = AKIAIOSFODNN7EXAMPLE
aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

$ cat ~/.aws/config 
[default]
region = eu-central-1

Alternatively, you can use the following environment variables when starting postgres to configure the S3 client:

  • AWS_ACCESS_KEY_ID: the access key ID of the AWS account
  • AWS_SECRET_ACCESS_KEY: the secret access key of the AWS account
  • AWS_SESSION_TOKEN: the session token for the AWS account
  • AWS_REGION: the default region of the AWS account
  • AWS_ENDPOINT_URL: the endpoint
  • AWS_SHARED_CREDENTIALS_FILE: an alternative location for the credentials file (only via environment variables)
  • AWS_CONFIG_FILE: an alternative location for the config file (only via environment variables)
  • AWS_PROFILE: the name of the profile from the credentials and config file (default profile name is default) (only via environment variables)
  • AWS_ALLOW_HTTP: allows http endpoints (only via environment variables)

Config source priority order is shown below:

  1. Environment variables,
  2. Config file.

Supported S3 uri formats are shown below:

  • s3:// <bucket> / <path>
  • https:// <bucket>.s3.amazonaws.com / <path>
  • https:// s3.amazonaws.com / <bucket> / <path>

Supported authorization methods' priority order is shown below:

  1. Temporary session tokens by assuming roles,
  2. Long term credentials.

Azure Blob Storage

The simplest way to configure object storage is by creating the standard ~/.azure/config file:

$ cat ~/.azure/config
[storage]
account = devstoreaccount1
key = Eby8vdM02xNOcqFlqUwJPLlmEtlCDXJ1OUzFT50uSRZ6IFsuFq2UVErCz4I6tq/K1SZFPTOtr/KBHBeksoGMGw==

Alternatively, you can use the following environment variables when starting postgres to configure the Azure Blob Storage client:

  • AZURE_STORAGE_ACCOUNT: the storage account name of the Azure Blob
  • AZURE_STORAGE_KEY: the storage key of the Azure Blob
  • AZURE_STORAGE_CONNECTION_STRING: the connection string for the Azure Blob (overrides any other config)
  • AZURE_STORAGE_SAS_TOKEN: the storage SAS token for the Azure Blob
  • AZURE_TENANT_ID: the tenant id for client secret auth (only via environment variables)
  • AZURE_CLIENT_ID: the client id for client secret auth (only via environment variables)
  • AZURE_CLIENT_SECRET: the client secret for client secret auth (only via environment variables)
  • AZURE_STORAGE_ENDPOINT: the endpoint (only via environment variables)
  • AZURE_CONFIG_FILE: an alternative location for the config file (only via environment variables)
  • AZURE_ALLOW_HTTP: allows http endpoints (only via environment variables)

Config source priority order is shown below:

  1. Connection string (read from environment variable or config file),
  2. Environment variables,
  3. Config file.

Supported Azure Blob Storage uri formats are shown below:

  • az:// <container> / <path>
  • azure:// <container> / <path>
  • https:// <account>.blob.core.windows.net / <container>

Supported authorization methods' priority order is shown below:

  1. Bearer token via client secret,
  2. Sas token,
  3. Storage key.

Copy Options

pg_parquet supports the following options in the COPY TO command:

  • format parquet: you need to specify this option to read or write Parquet files which does not end with .parquet[.<compression>] extension,
  • row_group_size <int>: the number of rows in each row group while writing Parquet files. The default row group size is 122880,
  • row_group_size_bytes <int>: the total byte size of rows in each row group while writing Parquet files. The default row group size bytes is row_group_size * 1024,
  • compression <string>: the compression format to use while writing Parquet files. The supported compression formats are uncompressed, snappy, gzip, brotli, lz4, lz4raw and zstd. The default compression format is snappy. If not specified, the compression format is determined by the file extension,
  • compression_level <int>: the compression level to use while writing Parquet files. The supported compression levels are only supported for gzip, zstd and brotli compression formats. The default compression level is 6 for gzip (0-10), 1 for zstd (1-22) and 1 for brotli (0-11).

pg_parquet supports the following options in the COPY FROM command:

  • format parquet: you need to specify this option to read or write Parquet files which does not end with .parquet[.<compression>] extension,
  • match_by <string>: method to match Parquet file fields to PostgreSQL table columns. The available methods are position and name. The default method is position. You can set it to name to match the columns by their name rather than by their position in the schema (default). Match by name is useful when field order differs between the Parquet file and the table, but their names match.

Configuration

There is currently only one GUC parameter to enable/disable the pg_parquet:

  • pg_parquet.enable_copy_hooks: you can set this parameter to on or off to enable or disable the pg_parquet extension. The default value is on.

Supported Types

pg_parquet has rich type support, including PostgreSQL's primitive, array, and composite types. Below is the table of the supported types in PostgreSQL and their corresponding Parquet types.

PostgreSQL Type Parquet Physical Type Logical Type
bool BOOLEAN
smallint INT16
integer INT32
bigint INT64
real FLOAT
oid INT32
double DOUBLE
numeric(1) FIXED_LEN_BYTE_ARRAY(16) DECIMAL(128)
text BYTE_ARRAY STRING
json BYTE_ARRAY STRING
bytea BYTE_ARRAY
date (2) INT32 DATE
timestamp INT64 TIMESTAMP_MICROS
timestamptz (3) INT64 TIMESTAMP_MICROS
time INT64 TIME_MICROS
timetz(3) INT64 TIME_MICROS
geometry(4) BYTE_ARRAY

Nested Types

PostgreSQL Type Parquet Physical Type Logical Type
composite GROUP STRUCT
array element's physical type LIST
crunchy_map(5) GROUP MAP

Warning

  • (1) numeric type is written the smallest possible memory width to parquet file as follows:
    • numeric(P <= 9, S) is represented as INT32 with DECIMAL logical type
    • numeric(9 < P <= 18, S) is represented as INT64 with DECIMAL logical type
    • numeric(18 < P <= 38, S) is represented as FIXED_LEN_BYTE_ARRAY(9-16) with DECIMAL logical type
    • numeric(38 < P, S) is represented as BYTE_ARRAY with STRING logical type
    • numeric is allowed by Postgres. (precision and scale not specified). These are represented by a default precision (38) and scale (9) instead of writing them as string. You get runtime error if your table tries to read or write a numeric value which is not allowed by the default precision and scale (29 integral digits before decimal point, 9 digits after decimal point).
  • (2) The date type is represented according to Unix epoch when writing to Parquet files. It is converted back according to PostgreSQL epoch when reading from Parquet files.
  • (3) The timestamptz and timetz types are adjusted to UTC when writing to Parquet files. They are converted back with UTC timezone when reading from Parquet files.
  • (4) The geometry type is represented as BYTE_ARRAY encoded as WKB when postgis extension is created. Otherwise, it is represented as BYTE_ARRAY with STRING logical type.
  • (5) crunchy_map is dependent on functionality provided by Crunchy Bridge. The crunchy_map type is represented as GROUP with MAP logical type when crunchy_map extension is created. Otherwise, it is represented as BYTE_ARRAY with STRING logical type.

Warning

Any type that does not have a corresponding Parquet type will be represented, as a fallback mechanism, as BYTE_ARRAY with STRING logical type. e.g. enum

Postgres Support Matrix

pg_parquet supports the following PostgreSQL versions:

PostgreSQL Major Version Supported
14
15
16
17