-
Notifications
You must be signed in to change notification settings - Fork 131
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
separated out the model from the evaluation, and ran on a basic RF model
- Loading branch information
Showing
4 changed files
with
439 additions
and
91 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
|
||
##============================================================================== | ||
## INITIALIZE | ||
##============================================================================== | ||
if(interactive()){ | ||
## Remove all objects; perform garbage collection | ||
rm(list=ls()) | ||
gc(reset=TRUE) | ||
## Detach libraries that are not used | ||
geneorama::detach_nonstandard_packages() | ||
} | ||
## Load libraries that are used | ||
geneorama::loadinstall_libraries(c("data.table", "randomForest", "ggplot2")) | ||
## Load custom functions | ||
geneorama::sourceDir("CODE/functions/") | ||
|
||
##============================================================================== | ||
## LOAD CACHED RDS FILES | ||
##============================================================================== | ||
dat <- readRDS("DATA/dat_model.Rds") | ||
|
||
## Only keep "Retail Food Establishment" | ||
dat <- dat[LICENSE_DESCRIPTION == "Retail Food Establishment"] | ||
## Remove License Description | ||
dat[ , LICENSE_DESCRIPTION := NULL] | ||
dat <- na.omit(dat) | ||
|
||
## Add criticalFound variable to dat: | ||
dat[ , criticalFound := pmin(1, criticalCount)] | ||
|
||
## Set the key for dat | ||
setkey(dat, Inspection_ID) | ||
|
||
## Match time period of original results | ||
# dat <- dat[Inspection_Date < "2013-09-01" | Inspection_Date > "2014-07-01"] | ||
|
||
##============================================================================== | ||
## CREATE MODEL DATA | ||
##============================================================================== | ||
# sort(colnames(dat)) | ||
xmat <- dat[ , list(Inspector = Inspector_Assigned, | ||
pastSerious = pmin(pastSerious, 1), | ||
pastCritical = pmin(pastCritical, 1), | ||
timeSinceLast, | ||
ageAtInspection = ifelse(ageAtInspection > 4, 1L, 0L), | ||
consumption_on_premises_incidental_activity, | ||
tobacco_retail_over_counter, | ||
temperatureMax, | ||
heat_burglary = pmin(heat_burglary, 70), | ||
heat_sanitation = pmin(heat_sanitation, 70), | ||
heat_garbage = pmin(heat_garbage, 50), | ||
# Facility_Type, | ||
criticalFound), | ||
keyby = Inspection_ID] | ||
mm <- model.matrix(criticalFound ~ . -1, data=xmat[ , -1, with=F]) | ||
mm <- as.data.table(mm) | ||
str(mm) | ||
colnames(mm) | ||
|
||
##============================================================================== | ||
## CREATE TEST / TRAIN PARTITIONS | ||
##============================================================================== | ||
## 2014-07-01 is an easy separator | ||
dat[Inspection_Date < "2014-07-01", range(Inspection_Date)] | ||
dat[Inspection_Date > "2014-07-01", range(Inspection_Date)] | ||
|
||
iiTrain <- dat[ , which(Inspection_Date < "2014-07-01")] | ||
iiTest <- dat[ , which(Inspection_Date > "2014-07-01")] | ||
|
||
## Check to see if any rows didn't make it through the model.matrix formula | ||
nrow(dat) | ||
nrow(xmat) | ||
nrow(mm) | ||
|
||
##============================================================================== | ||
## RANDOM FOREST MODEL | ||
##============================================================================== | ||
model <- randomForest(x = as.matrix(mm[iiTrain]), | ||
y = as.factor(xmat[iiTrain, criticalFound]), | ||
importance=TRUE) | ||
|
||
## ATTACH PREDICTIONS TO DAT | ||
dat$score <- predict(model, as.matrix(mm), | ||
type="prob")[ , 2] | ||
|
||
## Identify each row as test / train | ||
dat$Test <- 1:nrow(dat) %in% iiTest | ||
dat$Train <- 1:nrow(dat) %in% iiTrain | ||
|
||
##============================================================================== | ||
## SAVE RESULTS | ||
##============================================================================== | ||
|
||
saveRDS(dat, "DATA/30_random_forest_data.Rds") | ||
saveRDS(model, "DATA/30_random_forest_model.Rds") | ||
|
||
|
||
|
Oops, something went wrong.