-
Notifications
You must be signed in to change notification settings - Fork 80
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
fixed the moving of plotting .py files
- Loading branch information
Emmanuel Benazera
committed
Feb 14, 2015
1 parent
cfe5ed7
commit 328bd00
Showing
2 changed files
with
219 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
#!/usr/bin/env python | ||
"""In a OS shell:: | ||
python cma_multiplt.py data_file_name | ||
or in a python shell:: | ||
import cma_multiplt as lcmaplt | ||
lcmaplt.plot(data_file_name) | ||
""" | ||
# CMA-ES, Covariance Matrix Adaptation Evolution Strategy | ||
# Copyright (c) 2014 Inria | ||
# Author: Emmanuel Benazera <[email protected]> | ||
# | ||
# This file is part of libcmaes. | ||
# | ||
# libcmaes is free software: you can redistribute it and/or modify | ||
# it under the terms of the GNU Lesser General Public License as published by | ||
# the Free Software Foundation, either version 3 of the License, or | ||
# (at your option) any later version. | ||
# | ||
# libcmaes is distributed in the hope that it will be useful, | ||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
# GNU Lesser General Public License for more details. | ||
# | ||
# You should have received a copy of the GNU Lesser General Public License | ||
# along with libcmaes. If not, see <http://www.gnu.org/licenses/>. | ||
## | ||
|
||
import sys, pylab, csv | ||
import numpy as np | ||
from matplotlib.pylab import figure, ioff, ion, subplot, semilogy, hold, grid, axis, title, text, xlabel, isinteractive, draw, gcf | ||
# TODO: the above direct imports clutter the interface in a Python shell | ||
|
||
# number of static variables at the head of every line (i.e. independent of problem dimension) | ||
single_values = 4 | ||
|
||
def plot(filename): | ||
# read data into numpy array | ||
dat = np.loadtxt(filename,dtype=float) | ||
|
||
dim = int(np.ceil(np.shape(dat)[1] - single_values) / 3) # we estimate the problem dimension from the data | ||
#print dim | ||
|
||
fvalue = np.absolute(dat[:,0]) | ||
fevals = dat[:,1] | ||
sigma = dat[:,2] | ||
kappa = dat[:,3] | ||
if dim > 0: | ||
eigenvc = [] | ||
for c in range(single_values,single_values+dim): | ||
eigenvc.append(c) | ||
eigenv = dat[:,eigenvc] | ||
stdsc = [] | ||
for c in range(single_values+dim,single_values+2*dim): | ||
stdsc.append(c) | ||
stds = dat[:,stdsc] | ||
minstds = np.amin(stds,axis=1) | ||
maxstds = np.amax(stds,axis=1) | ||
xmeanc = [] | ||
for c in range(single_values+2*dim,single_values+3*dim): | ||
xmeanc.append(c) | ||
xmean = dat[:,xmeanc] | ||
|
||
# plot data. | ||
pylab.rcParams['font.size'] = 10 | ||
xlab = "function evaluations" | ||
|
||
# plot fvalue, sigma, kappa | ||
if dim > 0: | ||
subplot(221) | ||
semilogy(fevals,fvalue,'b') | ||
semilogy(fevals,sigma,'g') | ||
semilogy(fevals,kappa,'r') | ||
if dim > 0: | ||
semilogy(fevals,sigma*minstds,'y') | ||
semilogy(fevals,sigma*maxstds,'y') | ||
title('f-value (blue), sigma (green), kappa (red)') | ||
grid(True) | ||
|
||
if dim == 0: | ||
pylab.xlabel(xlab) | ||
pylab.show(); | ||
msg = ' --- press return to continue --- ' | ||
raw_input(msg) if sys.version < '3' else input(msg) | ||
sys.exit(1) | ||
|
||
# plot xmean | ||
subplot(222) | ||
pylab.plot(fevals,xmean) | ||
title('Object Variables (mean, ' + str(dim) + '-D)') | ||
grid(True) | ||
|
||
# plot eigenvalues | ||
subplot(223) | ||
semilogy(fevals,eigenv,'-b') | ||
pylab.xlabel(xlab) | ||
title('Eigenvalues') | ||
grid(True) | ||
|
||
# plot std deviations | ||
subplot(224) | ||
semilogy(fevals,stds) | ||
pylab.xlabel(xlab) | ||
title('Standard Deviation in all coordinates') | ||
grid(True) | ||
|
||
pylab.show() | ||
|
||
if __name__ == "__main__": | ||
plot(sys.argv[1]) | ||
msg = ' --- press return to continue --- ' | ||
raw_input(msg) if sys.version < '3' else input(msg) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
## | ||
# CMA-ES, Covariance Matrix Adaptation Evolution Strategy | ||
# Copyright (c) 2014 Inria | ||
# Author: Emmanuel Benazera <[email protected]> | ||
# | ||
# This file is part of libcmaes. | ||
# | ||
# libcmaes is free software: you can redistribute it and/or modify | ||
# it under the terms of the GNU Lesser General Public License as published by | ||
# the Free Software Foundation, either version 3 of the License, or | ||
# (at your option) any later version. | ||
# | ||
# libcmaes is distributed in the hope that it will be useful, | ||
# but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
# GNU Lesser General Public License for more details. | ||
# | ||
# You should have received a copy of the GNU Lesser General Public License | ||
# along with libcmaes. If not, see <http://www.gnu.org/licenses/>. | ||
## | ||
|
||
import sys, pylab, csv | ||
import numpy as np | ||
from matplotlib.pylab import figure, ioff, ion, subplot, semilogy, hold, plot, grid, axis, title, text, xlabel, isinteractive, draw, gcf | ||
from numpy import * | ||
|
||
# number of static variables at the head of every line (i.e. independent of problem dimension) | ||
single_values = 4 | ||
|
||
# read data into numpy array | ||
dat = loadtxt(sys.argv[1],dtype=float) | ||
|
||
dim = int(ceil(np.shape(dat)[1] - single_values - 3) / 3) # we estimate the problem dimension from the data | ||
#print dim | ||
|
||
fvalue = np.absolute(dat[:,0]) | ||
fevals = dat[:,1] | ||
sigma = dat[:,2] | ||
kappa = dat[:,3] | ||
eigenvc = [] | ||
for c in range(single_values,single_values+dim): | ||
eigenvc.append(c) | ||
eigenv = dat[:,eigenvc] | ||
stdsc = [] | ||
for c in range(single_values+dim,single_values+2*dim): | ||
stdsc.append(c) | ||
stds = dat[:,stdsc] | ||
minstds = np.amin(stds,axis=1) | ||
maxstds = np.amax(stds,axis=1) | ||
xmeanc = [] | ||
for c in range(single_values+2*dim,single_values+3*dim): | ||
xmeanc.append(c) | ||
xmean = dat[:,xmeanc] | ||
trainerr = dat[:,single_values+3*dim+1] | ||
testerr = dat[:,single_values+3*dim+2] | ||
stesterr = dat[:,single_values+3*dim+3] | ||
|
||
# plot data. | ||
pylab.rcParams['font.size'] = 10 | ||
xlab = "function evaluations" | ||
|
||
# plot fvalue, sigma, kappa | ||
subplot(321) | ||
semilogy(fevals,fvalue,'b') | ||
semilogy(fevals,sigma,'g') | ||
semilogy(fevals,kappa,'r') | ||
semilogy(fevals,sigma*minstds,'y') | ||
semilogy(fevals,sigma*maxstds,'y') | ||
title('f-value (blue), sigma (green), kappa (red)') | ||
grid(True) | ||
|
||
# plot xmean | ||
subplot(322) | ||
plot(fevals,xmean) | ||
title('Object Variables (mean, ' + str(dim) + '-D)') | ||
grid(True) | ||
|
||
# plot eigenvalues | ||
subplot(323) | ||
semilogy(fevals,eigenv,'-b') | ||
pylab.xlabel(xlab) | ||
title('Eigenvalues') | ||
grid(True) | ||
|
||
# plot std deviations | ||
subplot(324) | ||
semilogy(fevals,stds) | ||
pylab.xlabel(xlab) | ||
title('Standard Deviation in all coordinates') | ||
grid(True) | ||
|
||
# plot std deviations | ||
subplot(325) | ||
pylab.ylim(0,1) | ||
plot(fevals,trainerr,'r') | ||
plot(fevals,testerr,'g') | ||
plot(fevals,stesterr,'b') | ||
title('Surrogate error: train (red), test (green), smoothed test (blue)') | ||
grid(True) | ||
|
||
pylab.show() | ||
|
||
msg = ' --- press return to continue --- ' | ||
raw_input(msg) if sys.version < '3' else input(msg) |