-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBeluga_Trip.asv
346 lines (302 loc) · 9.77 KB
/
Beluga_Trip.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
% classic TSP
% short range aircraft + european cities
% Let's imagie one senario : Airbus sends its Beluga aircraft (A300-600ST)
% to carry the oversized cargo from one european airport to Toulouse.
% As a heavy transporter, the range of Beluga is only 2779 km.
% the trips for the 40 airports is below 9000
clear all;
Brange = 2779;
% 30 airports selected from the list of the busiest airports in Europe.
airport_name = {
'Toulouse'; %1
'Paris';
'Lyon'; %3
'Brussels';
'Prague'; %5
'Copenhagen';
'Helsinki';
'Frankfurt';
'Dusseldorf';
'Berlin'; %10
'Thessaloniki';
'Larnaca';
'Budapest';
'Reykjavik';
'Dublin'; %15
'Naples';
'Milan';
'Oslo';
'Warsow';
'Lisbon'; %20
'Moscow';
'Belgrade';
'Madrid'; %23
'Barcelona'; %24
'Seville'; %25
'Geneva';
'Zurich';
'Istanbul';
'Izmir';
'London'; %30
'Amsterdam';
'Ankara';
'Pisa';
'Belfast'; %34
'Vienna';
'Nantes'; %36
'Munich';
'Hamburg'; %38
'Marseille';
'Bologna'; %40
};
N = size(airport_name);
% check if the airport position file exits
% if OK input the info from that file
% if no OK just creat the file with python
fid = fopen('position_info.txt','r');
if fid <0
% output the name list in airport_list.txt
file_airport_list = fopen('airport_list.txt','w');
for i=1:N(1)
fprintf(file_airport_list,'%s \n', airport_name{i});
end
fclose(file_airport_list);
% call the python file: geolocation.py, using Python Geocoding Toolbox geopy 1.11.0
%[status, cmdout] = system('python geolocation.py airport_list.txt position_info.txt')
[status, cmdout] = system('python geolocation.py airport_list.txt position_info.txt');
pause(15);
end
formatSpec = '%s %f %f';
% input the airport position from position_info.txt
airport = struct ('city', [], 'latitude',[], 'longitude', []);
[c,lat,lon] = textread('position_info.txt',formatSpec);
fclose('all');
for i=1:N(1)
airport(i).city = c(i);
airport(i).latitude = lat(i);
airport(i).longitude = lon(i);
end
% after the preparation, we can calcalat the distance between every two
% cities (from city i to city j), in order to the next optimization problem
Dis_cities = zeros(N(1));
for i=1:N(1)
for j=1:N(1)
if i==j
Dis_cities(i,j) = 0;
else
Dis_cities(i,j) = getdistance(airport(i).latitude,airport(i).longitude,airport(j).latitude,airport(j).longitude);
end
end
end
figure(1)
% draw the european map with the cities
h = worldmap('Europe');
%getm(h,'MapProjection');
getm(h,'MapParallels');
geoshow('landareas.shp', 'FaceColor', [0.15 0.5 0.15])
geoshow('worldlakes.shp', 'FaceColor', 'cyan')
%geoshow('worldrivers.shp', 'Color', 'blue')
%geoshow('worldcities.shp', 'Marker', '.', 'Color', 'red')
geoshow(lat,lon,'DisplayType','point')
for i=1:N(1)
textm(airport(i).latitude, airport(i).longitude, airport(i).city)
end
% Map is OK, now is the optimization problem
nStops = N(1);
% Generate all the trips, meaning all pairs of stops.
idxs = nchoosek(1:nStops,2);
%dist = getdistance (lat(idxs(:,1)),lon(idxs(:,1)),lat(idxs(:,2)),lon(idxs(:,2)));
%dist = hypot(lat(idxs(:,1)) - lat(idxs(:,2)), lon(idxs(:,1)) - lon(idxs(:,2)));
account = 1;
dist = [];
for i = 1:nStops
for j = i+1: nStops
% change the matrix to list
dist(account) = Dis_cities(i,j);
account = account + 1;
end
end
lendist = length(dist);
Aeq = spones(1:length(idxs));
beq = nStops;
Aeq = [Aeq;spalloc(nStops,length(idxs),nStops*(nStops-1))]; % allocate a sparse matrix
for ii = 1:nStops
whichIdxs = (idxs == ii); % find the trips that include stop ii
whichIdxs = sparse(sum(whichIdxs,2)); % include trips where ii is at either end
Aeq(ii+1,:) = whichIdxs'; % include in the constraint matrix
end
beq = [beq; 2*ones(nStops,1)];
intcon = 1:lendist;
lb = zeros(lendist,1);
ub = ones(lendist,1);
opts = optimoptions('intlinprog','Display','off');
[x_tsp,costopt,exitflag,output] = intlinprog(dist,intcon,[],[],Aeq,beq,lb,ub,opts);
tours = detectSubtours(x_tsp,idxs);
numtours = length(tours); % number of subtours
fprintf('# of subtours: %d\n',numtours);
%%%%
A = spalloc(0,lendist,0); % Allocate a sparse linear inequality constraint matrix
b = [];
while numtours > 1 % repeat until there is just one subtour
% Add the subtour constraints
b = [b;zeros(numtours,1)]; % allocate b
A = [A;spalloc(numtours,lendist,nStops)]; % a guess at how many nonzeros to allocate
for ii = 1:numtours
rowIdx = size(A,1)+1; % Counter for indexing
subTourIdx = tours{ii}; % Extract the current subtour
% The next lines find all of the variables associated with the
% particular subtour, then add an inequality constraint to prohibit
% that subtour and all subtours that use those stops.
variations = nchoosek(1:length(subTourIdx),2);
for jj = 1:length(variations)
whichVar = (sum(idxs==subTourIdx(variations(jj,1)),2)) & ...
(sum(idxs==subTourIdx(variations(jj,2)),2));
A(rowIdx,whichVar) = 1;
end
b(rowIdx) = length(subTourIdx)-1; % One less trip than subtour stops
end
% Try to optimize again
[x_tsp,costopt,exitflag,output] = intlinprog(dist,intcon,A,b,Aeq,beq,lb,ub,opts);
% How many subtours this time?
tours = detectSubtours(x_tsp,idxs);
numtours = length(tours); % number of subtours
fprintf('# of subtours: %d\n',numtours);
%segments = find(x_tsp);
%lh = zeros(nStops,1);
%lh = updateSalesmanPlot(lh,x_tsp,idxs,lon,lat);
%geoshow(lat,lon,x_tsp,'DisplayType','point')
end
%%%%%%%%%%%%%
% Update the map with the Beluga iteration
%%%%%%%%%%%%%%
Res = zeros(nStops);
account = 0;
for i = 1: nStops
for j = i+1: nStops
account = account + 1;
if x_tsp(account)==1;
Res(i,j) = 1;
[pointlat,pointlon] = gcwaypts(lat(i),lon(i),lat(j),lon(j));
geoshow(pointlat,pointlon,'DisplayType','line')
pointTrack = track2('gc',lat(i),lon(i),lat(j),lon(j));
plotm(pointTrack);
end
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Biograph of the iteration
%%%%%%%%%%%%%%%%
ListA = [];
ListB = [];
ListW = [];
Edge = struct ('cityA', [], 'cityB',[]);
flag = 0;
for i = 1: nStops
for j = 1: nStops
if Res(i,j)==1
flag=flag+1;
ListA(flag)=i;
ListB(flag)=j;
ListW(flag)= Dis_cities(i,j);
Edge(flag).cityA = c(i) ; % edge connecting two cities
Edge(flag).cityB = c(j);
end
end
end
% several graph to illustrate the iteration
DG = sparse(ListA,ListB,ListW,nStops,nStops);
UG = tril(DG + DG');
Graph = biograph(UG,airport_name,'ShowArrows','off','ShowWeights','on')
view(Graph);
%isdag(Graph);
% using DFS to find the circle
figure(2)
G = graph(ListA,ListB);
plot(G);
title('the iteration of aircraft');
% get the list of iternation of aircraft
Iter = dfsearch(G,1);
% Generate the Markov Chain Transition Matrix from Iter
% A node of G is a state of MDP
% An arc of G is an action in MDP: deterministic arc
TransMDP = zeros(nStops)
for i = 1:nStops-1
TransMDP(Iter(i),Iter(i+1))=1;
end
TransMDP(Iter(nStops),1)=1;
% using the hamiltonian to get the hamilton path and the visulized path
% basing on the MDP transition matrix
% idea is from Hamiltonian cycle problem (HCP)
figure(3)
hamPath = hamiltonian(TransMDP,1,1);
ListS = hamPath(1:length(hamPath)-1);
ListT = hamPath(2:length(hamPath));
EdgeTable = table([ListS' ListT'],'VariableNames',{'EndNodes'});
% creat the EdgeTable from the hamPath
plot(graph(EdgeTable));
title('Hamiltonian path for routine mission');
%%%%%%%%%%%%%%%%%
%%factory sites trip: Nantes 36, Hamburg 38, Madrid 23, Seville 25
%%% two potential sites: Lyon 3, Barcelona 24
%%% Beluga will probably often visit these sites directly from Toulouse 1.
%%% Therefore we add consider a new matrix Mission with M(1,36),M(36,1)
%%% M(1,38), M(38,1), M(1,23), M(23,1), M(1,25), M(25,1), M(1,3), M(3,1)
%%% M(1,24), M(24,1) are equal to 1.
%%%%%%%%%%%%%
M = zeros(nStops);
Fac_sites = find(ismember(airport_name,{
'Nantes','Hamburg','Madrid','Seville','Lyon','Barcelona'}))
M(1,Fac_sites)=1;
M(Fac_sites,1)=1;
% The routine mission and the special one can be done in one trip as well
Total_M1 = double(TransMDP | M);
% This is not a MDP transition matris, but it is a graph
figure(4)
hamPath = hamiltonian(Total_M1,1,1);
ListS = hamPath(1:length(hamPath)-1);
ListT = hamPath(2:length(hamPath));
EdgeTable = table([ListS' ListT'],'VariableNames',{'EndNodes'});
plot(graph(EdgeTable));
title('Hamiltonian path for two missions');
%%%%normally the Hamiltonian path stays the same as previous
%%%%%%%%%
%%suppose the special mission only has one third frequence than the routine
%%one: Pr(s)=0.25 and Pr(r)=0.75
Total_M2 = 0.25*M + 0.75*TransMDP;
for i=1:N(1)
if sum(Total_M2(i,:))~=1
Total_M2(i,:)= normalization(Total_M2(i,:));
end
end
Num = 150;
row = size(Total_M2,1);
x_states = zeros(row,Num);
x = eye(1,row);
x_states(:,1) = x;
% after Num 100 missions completed in general
for t = 1:Num %col
x = double(x*Total_M2);
x_states(:,t+1) = x;
end
figure(5);
plot(1:N(1),x_states(:,end),'-b','linewidth',4);
hold on
stem(1:N(1),x_states(:,end));
grid
xlabel('40 airports in Europe');
ylabel('Probability Distribution after 150 missions');
title('Probability and Importance of Airport');
set(gca,'fontsize',18)
axis tight
%% steady state
[V, l] = eigs(Total_M2',1,'lm');
%the columns of V are the eigenvectors
steady_state_value = normalization(V);
figure(6)
plot(1:40,steady_state_value,'-r','linewidth',3);
grid
xlabel('40 airports in Europe');
ylabel('Probability Distribution');
title('Steady State Probability Distribution Values');
set(gca,'fontsize',18)
axis tight