-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathsubgraph.py
198 lines (156 loc) · 6.82 KB
/
subgraph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import pickle
import numpy as np
from utils import get_g, serialize
import torch
import lmdb
import dgl
from collections import defaultdict as ddict
from tqdm import tqdm
import random
from scipy import sparse
import multiprocessing as mp
def gen_subgraph_datasets(args):
print('----------generate tasks(sub-KGs) for meta-training----------')
data = pickle.load(open(args.data_path, 'rb'))
bg_train_g = get_g(data['train']['triples'])
BYTES_PER_DATUM = get_average_subgraph_size(args, args.num_sample_for_estimate_size, bg_train_g) * 2
map_size = (args.num_train_subgraph) * BYTES_PER_DATUM
env = lmdb.open(args.db_path, map_size=map_size, max_dbs=1)
train_subgraphs_db = env.open_db("train_subgraphs".encode())
with mp.Pool(processes=10, initializer=intialize_worker, initargs=(args, bg_train_g)) as p:
idx_ = range(args.num_train_subgraph)
for (str_id, datum) in tqdm(p.imap(sample_one_subgraph, idx_), total=args.num_train_subgraph):
with env.begin(write=True, db=train_subgraphs_db) as txn:
txn.put(str_id, serialize(datum))
def intialize_worker(args, bg_train_g):
global args_, bg_train_g_
args_, bg_train_g_ = args, bg_train_g
def sample_one_subgraph(idx_):
args = args_
bg_train_g = bg_train_g_
# get graph with bi-direction
bg_train_g_undir = dgl.graph((torch.cat([bg_train_g.edges()[0], bg_train_g.edges()[1]]),
torch.cat([bg_train_g.edges()[1], bg_train_g.edges()[0]])))
# induce sub-graph by sampled nodes
while True:
while True:
sel_nodes = []
for i in range(args.rw_0):
if i == 0:
cand_nodes = np.arange(bg_train_g.num_nodes())
else:
cand_nodes = sel_nodes
try:
rw, _ = dgl.sampling.random_walk(bg_train_g_undir,
np.random.choice(cand_nodes, 1, replace=False).repeat(args.rw_1),
length=args.rw_2)
except ValueError:
print(cand_nodes)
sel_nodes.extend(np.unique(rw.reshape(-1)))
sel_nodes = list(np.unique(sel_nodes)) if -1 not in sel_nodes else list(np.unique(sel_nodes))[1:]
sub_g = dgl.node_subgraph(bg_train_g, sel_nodes)
if sub_g.num_nodes() >= 50:
break
sub_tri = torch.stack([sub_g.ndata[dgl.NID][sub_g.edges()[0]],
sub_g.edata['rel'],
sub_g.ndata[dgl.NID][sub_g.edges()[1]]])
sub_tri = sub_tri.T.tolist()
random.shuffle(sub_tri)
ent_freq = ddict(int)
rel_freq = ddict(int)
triples_reidx = []
rel_reidx = dict()
relidx = 0
ent_reidx = dict()
entidx = 0
for tri in sub_tri:
h, r, t = tri
if h not in ent_reidx.keys():
ent_reidx[h] = entidx
entidx += 1
if t not in ent_reidx.keys():
ent_reidx[t] = entidx
entidx += 1
if r not in rel_reidx.keys():
rel_reidx[r] = relidx
relidx += 1
ent_freq[ent_reidx[h]] += 1
ent_freq[ent_reidx[t]] += 1
rel_freq[rel_reidx[r]] += 1
triples_reidx.append([ent_reidx[h], rel_reidx[r], ent_reidx[t]])
ent_reidx_inv = {v: k for k, v in ent_reidx.items()}
rel_reidx_inv = {v: k for k, v in rel_reidx.items()}
ent_map_list = [ent_reidx_inv[i] for i in range(len(ent_reidx))]
rel_map_list = [rel_reidx_inv[i] for i in range(len(rel_reidx))]
# randomly get query triples
que_tris = []
sup_tris = []
for idx, tri in enumerate(triples_reidx):
h, r, t = tri
if ent_freq[h] > 2 and ent_freq[t] > 2 and rel_freq[r] > 2:
que_tris.append(tri)
ent_freq[h] -= 1
ent_freq[t] -= 1
rel_freq[r] -= 1
else:
sup_tris.append(tri)
if len(que_tris) >= int(len(triples_reidx)*0.1):
break
sup_tris.extend(triples_reidx[idx+1:])
if len(que_tris) >= int(len(triples_reidx)*0.1):
break
# hr2t, rt2h
hr2t, rt2h, rel_head, rel_tail = get_hr2t_rt2h_sup_que(sup_tris, que_tris)
pattern_tris = get_train_pattern_g(rel_head, rel_tail)
str_id = '{:08}'.format(idx_).encode('ascii')
return str_id, (sup_tris, pattern_tris, que_tris, hr2t, rt2h, ent_map_list, rel_map_list)
def get_train_pattern_g(rel_head, rel_tail):
# adjacency matrix for rel and rel of different pattern
tail_head = torch.matmul(rel_tail, rel_head.T)
head_tail = torch.matmul(rel_head, rel_tail.T)
tail_tail = torch.matmul(rel_tail, rel_tail.T) - torch.diag(torch.sum(rel_tail, axis=1))
head_head = torch.matmul(rel_head, rel_head.T) - torch.diag(torch.sum(rel_head, axis=1))
# construct pattern graph from adjacency matrix
src = torch.LongTensor([])
dst = torch.LongTensor([])
p_rel = torch.LongTensor([])
p_w = torch.LongTensor([])
for p_rel_idx, mat in enumerate([tail_head, head_tail, tail_tail, head_head]):
sp_mat = sparse.coo_matrix(mat)
src = torch.cat([src, torch.from_numpy(sp_mat.row)])
dst = torch.cat([dst, torch.from_numpy(sp_mat.col)])
p_rel = torch.cat([p_rel, torch.LongTensor([p_rel_idx] * len(sp_mat.data))])
p_w = torch.cat([p_w, torch.from_numpy(sp_mat.data)])
return torch.stack([src, p_rel, dst]).T.tolist()
def get_average_subgraph_size(args, sample_size, bg_train_g):
total_size = 0
with mp.Pool(processes=10, initializer=intialize_worker, initargs=(args, bg_train_g)) as p:
idx_ = range(sample_size)
for (str_id, datum) in p.imap(sample_one_subgraph, idx_):
total_size += len(serialize(datum))
return total_size / sample_size
def get_hr2t_rt2h_sup_que(sup_tris, que_tris):
hr2t = ddict(list)
rt2h = ddict(list)
triples = torch.LongTensor(sup_tris)
num_rel = torch.unique(triples[:, 1]).shape[0]
num_ent = torch.unique(torch.cat((triples[:, 0], triples[:, 2]))).shape[0]
rel_head = torch.zeros((num_rel, num_ent), dtype=torch.int)
rel_tail = torch.zeros((num_rel, num_ent), dtype=torch.int)
for tri in sup_tris:
h, r, t = tri
hr2t[(h, r)].append(t)
rt2h[(r, t)].append(h)
rel_head[r, h] += 1
rel_tail[r, t] += 1
for tri in que_tris:
h, r, t = tri
hr2t[(h, r)].append(t)
rt2h[(r, t)].append(h)
que_hr2t = dict()
que_rt2h = dict()
for tri in que_tris:
h, r, t = tri
que_hr2t[(h, r)] = hr2t[(h, r)]
que_rt2h[(r, t)] = rt2h[(r, t)]
return que_hr2t, que_rt2h, rel_head, rel_tail