-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmodel.py
87 lines (64 loc) · 3.42 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import torch.nn as nn
import torch
import dgl
from ext_gnn import ExtGNN
class Model(nn.Module):
def __init__(self, args):
super(Model, self).__init__()
self.args = args
self.dim = args.dim
self.rel_comp = nn.Parameter(torch.Tensor(args.num_rel, args.num_rel_bases))
nn.init.xavier_uniform_(self.rel_comp, gain=nn.init.calculate_gain('relu'))
self.rel_feat = nn.Parameter(torch.Tensor(args.num_rel_bases, self.args.rel_dim))
nn.init.xavier_uniform_(self.rel_feat, gain=nn.init.calculate_gain('relu'))
self.ent_feat = nn.Parameter(torch.Tensor(args.num_ent, self.args.ent_dim))
nn.init.xavier_uniform_(self.ent_feat, gain=nn.init.calculate_gain('relu'))
self.rel_head_feat = nn.Parameter(torch.Tensor(args.num_rel_bases, self.args.ent_dim))
self.rel_tail_feat = nn.Parameter(torch.Tensor(args.num_rel_bases, self.args.ent_dim))
nn.init.xavier_uniform_(self.rel_head_feat, gain=nn.init.calculate_gain('relu'))
nn.init.xavier_uniform_(self.rel_tail_feat, gain=nn.init.calculate_gain('relu'))
# for initializing relation in pattern graph (relation position graph)
self.pattern_rel_ent = nn.Parameter(torch.Tensor(4, args.num_rel_bases))
nn.init.xavier_uniform_(self.pattern_rel_ent, gain=nn.init.calculate_gain('relu'))
self.ext_gnn = ExtGNN(args)
# relation feature representation
def init_pattern_g(self, pattern_g):
with pattern_g.local_scope():
etypes = pattern_g.edata['rel']
pattern_g.edata['edge_h'] = self.pattern_rel_ent[etypes]
message_func = dgl.function.copy_e('edge_h', 'msg')
reduce_func = dgl.function.mean('msg', 'h')
pattern_g.update_all(message_func, reduce_func)
pattern_g.edata.pop('edge_h')
# for observed rel
obs_idx = (pattern_g.ndata['ori_idx'] != -1)
pattern_g.ndata['h'][obs_idx] = self.rel_comp[pattern_g.ndata['ori_idx'][obs_idx]]
rel_coef = pattern_g.ndata['h']
return rel_coef
# entity feature representation
def init_g(self, g, rel_coef):
with g.local_scope():
num_edge = g.num_edges()
etypes = g.edata['b_rel']
rel_head_emb = torch.matmul(rel_coef, self.rel_head_feat)
rel_tail_emb = torch.matmul(rel_coef, self.rel_tail_feat)
g.edata['edge_h'] = torch.zeros(num_edge, self.args.ent_dim).to(self.args.gpu)
non_inv_idx = (g.edata['inv'] == 0)
inv_idx = (g.edata['inv'] == 1)
g.edata['edge_h'][inv_idx] = rel_head_emb[etypes[inv_idx]]
g.edata['edge_h'][non_inv_idx] = rel_tail_emb[etypes[non_inv_idx]]
message_func = dgl.function.copy_e('edge_h', 'msg')
reduce_func = dgl.function.mean('msg', 'h')
g.update_all(message_func, reduce_func)
g.edata.pop('edge_h')
# for observed ent
obs_idx = (g.ndata['ori_idx'] != -1)
g.ndata['h'][obs_idx] = self.ent_feat[g.ndata['ori_idx'][obs_idx]]
ent_feat = g.ndata['h']
return ent_feat
def forward(self, g, pattern_g):
rel_coef = self.init_pattern_g(pattern_g)
init_ent_feat = self.init_g(g, rel_coef)
init_rel_feat = torch.matmul(rel_coef, self.rel_feat)
ent_emb, rel_emb = self.ext_gnn(g, ent_feat=init_ent_feat, rel_feat=init_rel_feat)
return ent_emb, rel_emb