-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain.py
98 lines (86 loc) · 3.78 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import torch
import argparse
import random
import shutil
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.optim.lr_scheduler as lrs
from torch.utils.data import DataLoader
from net.net import net
from data import get_training_set, get_eval_set
from utils import *
# Training settings
parser = argparse.ArgumentParser(description='PairLIE')
parser.add_argument('--batchSize', type=int, default=1, help='training batch size')
parser.add_argument('--nEpochs', type=int, default=400, help='number of epochs to train for')
parser.add_argument('--snapshots', type=int, default=20, help='Snapshots')
parser.add_argument('--start_iter', type=int, default=1, help='Starting Epoch')
parser.add_argument('--lr', type=float, default=1e-4, help='Learning Rate. Default=1e-4')
parser.add_argument('--gpu_mode', type=bool, default=True)
parser.add_argument('--threads', type=int, default=0, help='number of threads for data loader to use')
parser.add_argument('--decay', type=int, default='100', help='learning rate decay type')
parser.add_argument('--gamma', type=float, default=0.5, help='learning rate decay factor for step decay')
parser.add_argument('--seed', type=int, default=123456789, help='random seed to use. Default=123')
parser.add_argument('--data_train', type=str, default='../dataset/PairLIE-training-dataset/')
parser.add_argument('--rgb_range', type=int, default=1, help='maximum value of RGB')
parser.add_argument('--save_folder', default='weights/', help='Location to save checkpoint models')
parser.add_argument('--output_folder', default='results/', help='Location to save checkpoint models')
opt = parser.parse_args()
def seed_torch(seed=opt.seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
seed_torch()
cudnn.benchmark = True
def train():
model.train()
loss_print = 0
for iteration, batch in enumerate(training_data_loader, 1):
im1, im2, file1, file2 = batch[0], batch[1], batch[2], batch[3]
im1 = im1.cuda()
im2 = im2.cuda()
L1, R1, X1 = model(im1)
L2, R2, X2 = model(im2)
loss1 = C_loss(R1, R2)
loss2 = R_loss(L1, R1, im1, X1)
loss3 = P_loss(im1, X1)
loss = loss1 * 1 + loss2 * 1 + loss3 * 500
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_print = loss_print + loss.item()
if iteration % 10 == 0:
print("===> Epoch[{}]({}/{}): Loss: {:.4f} || Learning rate: lr={}.".format(epoch,
iteration, len(training_data_loader), loss_print, optimizer.param_groups[0]['lr']))
loss_print = 0
def checkpoint(epoch):
model_out_path = opt.save_folder+"epoch_{}.pth".format(epoch)
torch.save(model.state_dict(), model_out_path)
print("Checkpoint saved to {}".format(model_out_path))
cuda = opt.gpu_mode
if cuda and not torch.cuda.is_available():
raise Exception("No GPU found, please run without --cuda")
print('===> Loading datasets')
train_set = get_training_set(opt.data_train)
training_data_loader = DataLoader(dataset=train_set, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True)
print('===> Building model ')
model= net().cuda()
optimizer = optim.Adam(model.parameters(), lr=opt.lr, betas=(0.9, 0.999), eps=1e-8)
milestones = []
for i in range(1, opt.nEpochs+1):
if i % opt.decay == 0:
milestones.append(i)
scheduler = lrs.MultiStepLR(optimizer, milestones, opt.gamma)
score_best = 0
# shutil.rmtree(opt.save_folder)
# os.mkdir(opt.save_folder)
for epoch in range(opt.start_iter, opt.nEpochs + 1):
train()
scheduler.step()
if epoch % opt.snapshots == 0:
checkpoint(epoch)