Skip to content

Latest commit

 

History

History
77 lines (52 loc) · 2.42 KB

README.md

File metadata and controls

77 lines (52 loc) · 2.42 KB

Image Denoising

Gaussian Image Denoising

Evaluation

  • Download the pre-trained models and place them in ./pretrained_models/

  • Download testsets (Set12, BSD68, CBSD68, Kodak, McMaster, Urban100), run

python download_data.py --data test --noise gaussian

Grayscale image denoising testing (sigma=25)

  • To obtain denoised predictions, run
python -u test_gaussian_gray_denoising.py --yml Options/gau_gray_25.yml

Color blind image denoising testing (sigma=50)

python -u test_gaussian_color_denoising.py --yml Options/gau_color_50.yml

Real Image Denoising

Evaluation

  • Download the pre-trained models and place them in ./pretrained_models/

Testing on SIDD dataset

  • Download SIDD validation data, run
python download_data.py --noise real --data test --dataset SIDD
  • To obtain denoised results, run
python -u test_real_denoising_sidd.py --yml Options/sidd.yml
  • Download the SenseNoise testing data and place them in ./Datasets/

  • To obtain denoised results, run

python test_real_denoising_sense500.py --yml Options/sensenoise.yml