
Open source data ingestion for RAGs
with dlt

Akela Drissner

About Me
● Head of Solutions Engineering at dltHub (a data engineering company)

● Previously: Rasa, a conversational AI company

● Background in Machine Learning with a focus on NLP

● LinkedIn: linkedin.com/oakela

http://linkedin.com/oakela

Agenda of this workshop
1. Intro on data ingestion

2. Challenges of data ingestion

3. An intro to dlt and how it solves these challenges

4. Challenges of vector DBs

5. Intro to LanceDB

6. Practical implementation of a scalable RAG data pipeline

What is data ingestion?
The process of extracting data from a producer, transporting it to a convenient environment,
and preparing it for usage by normalising it, sometimes cleaning, and adding metadata.

Sometimes the format in which it appears is structured, and with an explicit schema (e.g.
Parquet or a db table)

Most of the time, the format is weakly typed and without explicit schema (e.g. csv and json), in
which case some normalization and cleaning is required

In many data science teams, data magically ✨ appears - because the engineer loads it.

💡 What is a schema? The schema specifies the expected format and structure of data within
a document or data store, defining the allowed keys, their data types, and any constraints or
relationships.

What is a RAG and a vector DB?
Retrieval augmented generation (RAG):

● A framework to retrieve contextually relevant information and integrate it into an LLM’s query
● Learn more

Vector DB:

● A database that lets you store, index and query embeddings of your data
● Learn more

https://youtu.be/Q75JgLEXMsM?feature=shared
https://youtu.be/C5AWdL3kg1Q?feature=shared

Why is this course even needed? Why not just use
some python scripts?

● Less work, no more breaking python scripts

● Make sure your data is of good quality (data contracts)

● Keep your data up to date without having to reload the entire dataset

● Make your data pipelines production ready!

Challenges with data ingestion

Moving data with scripts

Local
machine

Getting data from APIs

● Data is always changing - how do we keep it up to date?

● You need to be able to identify bad data

● You need to be able to version and roll back your data loads

Data & schema versioning

● Loading a few documents is one thing, what happens when you load thousands?

● Hardware limits: limited memory and disk space can cause your machines to crash

● Network limits: sometimes networks fail

● API limits: rate limiting

Scaling data ingestion

Additional consideration for RAGs
● Pre-processing:

○ Extracting the data from PDFs, jsons etc
○ Making sure the resulting text data is clean

● Chunking: making sure the text is in manageable segments

We won’t cover cleaning text data or chunking in detail - please refer to section 4 of the
LLM Zoomcamp

https://github.com/DataTalksClub/llm-zoomcamp/tree/main/04-orchestration

dlt (data load tool)

Introducing dlt
dlt is a Python library that automates data loading with features like schema creation, normalization,

and integration adaptability.

Introducing dlt

Easy install and set up.

Easy to use, learning curve is shallow,
declarative interface.

It’s Pythonic, you don’t have to learn new
frameworks or programming languages.

import dlt

pipeline = dlt.pipeline(
 pipeline_name='my_pipeline',
 destination='bigquery',
 dataset_name='my_data',
)
pipeline.run(data, table_name='users')

>> pip install dlt

Integrations
Verified sources:

30+ existing well-tested
sources, such as Postgres
CDC, SQL databases, REST API
connector, Google Sheets,
Zendesk, Stripe, Notion,
Hubspot, GitHub and others.

Destinations:

16 destinations, such as
DuckDB, Postgres, Delta
tables, BigQuery, Snowflake,
and others.

Reverse ETL – build your own
destination

Integrations:

dbt-runner, deploy helpers,
Streamlit build-in app, etc.

Be it a Google Colab notebook,
AWS Lambda function, an
Airflow DAG, or your local
laptop — dlt can be dropped in
anywhere.

https://dlthub.com/docs/dlt-ecosystem/verified-sources/
https://dlthub.com/docs/dlt-ecosystem/destinations/

Normalizing nested data
dlt normalizes nested data

data = [
 {
 'id': 1,
 'name': 'Alice',
 'job': {
 'company':"ScaleVector",
 'title': "Data Scientist",
 },
 'children': [
 {
 'id': 1,
 'name': 'Eve'
 },
 {
 'id': 2,
 'name': 'Wendy'
 }
]
 }
]

Schema evolution

dlt contains all DE best practices. Anyone who ever worked with Python can create the pipeline on a
Senior level:

■ Schema evolution With dlt schema evolution is handled automatically.
When modifications occur in the source data’s schema,
dlt detects these changes and updates the schema
accordingly.

Data contracts

dlt contains all DE best practices. Anyone who ever worked with Python can create the pipeline on a
Senior level:

■ Schema evolution
■ Data contracts

You can use data contracts modes to tell dlt how to apply
contract for a particular entity:

● evolve: No constraints on schema changes.
● freeze: Raise an exception if data is encountered that

does not fit the existing schema.
● discard_row: Discard any extracted row if it does not

adhere to the existing schema.
● discard_value: Discard data in an extracted row that

does not adhere to the existing schema.

https://dlthub.com/docs/general-usage/schema-contracts#schema-and-data-contracts

Incremental loading

dlt contains all DE best practices. Anyone who ever worked with Python can create the pipeline on a
Senior level:

■ Schema evolution
■ Data contracts
■ Incremental loading

Incremental loading is a crucial concept in data pipelines that
involves loading only new or changed data instead of reloading
the entire dataset.

https://dlthub.com/docs/general-usage/incremental-loading

Performance management

dlt contains all DE best practices. Anyone who ever worked with Python can create the pipeline on a
Senior level:

■ Schema evolution
■ Data contracts
■ Incremental loading
■ Performance management

dlt provides several mechanisms and configuration options
to manage performance and scale up pipelines:

1. Parallel execution: extraction, normalization, and load
processes in parallel.

2. Thread pools and async execution: sources and
resources that are run in parallel.

3. Memory buffers, intermediary file sizes, and
compression options.

4. Scalability through iterators and chunking.

https://dlthub.com/docs/reference/performance#parallelism
https://dlthub.com/docs/reference/performance#parallelism
https://dlthub.com/docs/reference/performance#running-several-pipelines-in-parallel-in-single-process
https://dlthub.com/docs/reference/performance#running-several-pipelines-in-parallel-in-single-process
https://dlthub.com/docs/reference/performance#memorydisk-management
https://dlthub.com/docs/reference/performance#memorydisk-management
https://dlthub.com/docs/build-a-pipeline-tutorial#scalability-via-iterators-chunking-and-parallelization

How does it address our challenges?
● Messy python scripts: with dlt you write minimal python code, it handles most complexities

automatically

● Extracting the data: dlt automatically unnests json, types it and figures out the schema

● Data versioning: Each load has an id, is versioned and could be rolled back

● Data quality: You can define “data contracts” that reject data that isn’t of the right type

● Scaling:

○ Incremental loading - only load new or changed data

○ Performance management

Challenges with vector DBs

Maintaining data and embeddings
● Most vector DBs only store embeddings and their metadata

● Extra infrastructure and maintenance costs!

Introducing LanceDB

LanceDB: a scalable open source vector DB
● Stores your data (incl text and images), the embeddings and metadata

● Highly scalable + fast

Link to colab
https://colab.research.google.com/drive/1nNOybHdWQiwUUuJFZu__xvJxL_ADU3xl?usp=sharing

https://colab.research.google.com/drive/1nNOybHdWQiwUUuJFZu__xvJxL_ADU3xl?usp=sharing

