-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathtrain.py
347 lines (300 loc) · 12.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import os
import time
import logging
import shutil
from argparse import ArgumentParser
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
from tensorboardX import SummaryWriter
import hd3model as models
from utils.utils import *
import data.hd3data as datasets
import cv2
cv2.ocl.setUseOpenCL(False)
cv2.setNumThreads(0)
# Setup
def get_parser():
parser = ArgumentParser(description='PyTorch Implementation of HD^3')
parser.add_argument('--dataset_name', type=str, help='dataset name')
parser.add_argument('--train_root', type=str, help='training data root')
parser.add_argument('--val_root', type=str, help='validation data root')
parser.add_argument('--train_list', type=str, help='train list')
parser.add_argument('--val_list', type=str, help='val list')
parser.add_argument('--task', type=str, help='stereo or flow')
parser.add_argument('--encoder', type=str, help='vgg or dlaup')
parser.add_argument('--decoder', type=str, help='resnet or hda')
parser.add_argument(
'--context', action='store_true', default=False, help='context module')
parser.add_argument(
'--base_lr', type=float, default=1e-4, help='learning rate')
parser.add_argument(
'--epochs', type=int, default=200, help='training epochs')
parser.add_argument(
'--batch_size', type=int, default=64, help='batch size')
parser.add_argument(
'--workers', type=int, default=16, help='data loader workers')
parser.add_argument(
'--weight_decay', type=float, default=4e-4, help='weight decay')
parser.add_argument(
'--pretrain', type=str, default='', help='path to pretrained model')
parser.add_argument(
'--pretrain_base',
type=str,
default='',
help='path to pretrained base network')
parser.add_argument(
'--evaluate',
action='store_true',
default=False,
help='evaluate on validation set')
parser.add_argument(
'--batch_size_val',
type=int,
default=1,
help='batch size for validation during training')
parser.add_argument(
'--save_step', type=int, default=50, help='model save step')
parser.add_argument(
'--save_path',
type=str,
default='model',
help='model and summary save path')
parser.add_argument(
'--print_freq', type=int, default=10, help='print frequency')
parser.add_argument(
'--visual_freq', type=int, default=20, help='visualization frequency')
return parser
# logger
def get_logger():
logger_name = "main-logger"
logger = logging.getLogger(logger_name)
logger.setLevel(logging.INFO)
handler = logging.StreamHandler()
fmt = "[%(asctime)s %(levelname)s %(filename)s line %(lineno)d %(process)d] %(message)s"
handler.setFormatter(logging.Formatter(fmt))
logger.addHandler(handler)
return logger
def main():
global args, logger, writer
args = get_parser().parse_args()
logger = get_logger()
writer = SummaryWriter(args.save_path)
logger.info(args)
logger.info("=> creating model ...")
### model ###
corr_range = [4, 4, 4, 4, 4, 4]
if args.task == 'flow':
corr_range = corr_range[:5]
model = models.HD3Model(args.task, args.encoder, args.decoder, corr_range,
args.context).cuda()
logger.info(model)
optimizer = torch.optim.Adam(
model.parameters(),
lr=args.base_lr,
weight_decay=args.weight_decay)
model = nn.DataParallel(model).cuda()
cudnn.enabled = True
cudnn.benchmark = True
best_epe_all = 1e9
if args.pretrain:
ckpt_name = args.pretrain
if os.path.isfile(ckpt_name):
logger.info("=> loading checkpoint '{}'".format(ckpt_name))
checkpoint = torch.load(ckpt_name)
model.load_state_dict(checkpoint['state_dict'])
logger.info("=> loaded checkpoint '{}'".format(ckpt_name))
else:
logger.info("=> no checkpoint found at '{}'".format(ckpt_name))
elif args.pretrain_base:
logger.info("=> loading pretrained base model '{}'".format(
args.pretrain_base))
base_prefix = "module.hd3net.encoder." if args.encoder!='dlaup' \
else "module.hd3net.encoder.base."
load_module_state_dict(
model, torch.load(args.pretrain_base), add=base_prefix)
logger.info("=> loaded pretrained base model '{}'".format(
args.pretrain_base))
### data loader ###
train_transform, val_transform = datasets.get_transform(
args.dataset_name, args.task, args.evaluate)
train_data = datasets.HD3Data(
mode=args.task,
data_root=args.train_root,
data_list=args.train_list,
label_num=1,
transform=train_transform)
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=args.batch_size,
shuffle=True,
num_workers=args.workers,
pin_memory=True)
if args.evaluate:
val_data = datasets.HD3Data(
mode=args.task,
data_root=args.val_root,
data_list=args.val_list,
label_num=1,
transform=val_transform)
val_loader = torch.utils.data.DataLoader(
val_data,
batch_size=args.batch_size_val,
shuffle=False,
num_workers=args.workers,
pin_memory=True)
### Go! ###
scheduler = get_lr_scheduler(optimizer, args.dataset_name)
for epoch in range(1, args.epochs + 1):
if scheduler is not None:
scheduler.step()
loss_train = train(train_loader, model, optimizer, epoch,
args.batch_size)
writer.add_scalar('loss_train', loss_train, epoch)
is_best = False
if args.evaluate:
torch.cuda.empty_cache()
loss_val, epe_val = validate(val_loader, model)
writer.add_scalar('loss_val', loss_val, epoch)
writer.add_scalar('epe_val', epe_val, epoch)
is_best = epe_val < best_epe_all
best_epe_all = min(epe_val, best_epe_all)
filename = os.path.join(args.save_path, 'model_latest.pth')
torch.save(
{
'epoch': epoch,
'state_dict': model.cpu().state_dict(),
'optimizer': optimizer.state_dict(),
'best_epe_all': best_epe_all
}, filename)
model.cuda()
if is_best:
shutil.copyfile(filename,
os.path.join(args.save_path, 'model_best.pth'))
if epoch % args.save_step == 0:
shutil.copyfile(
filename,
args.save_path + '/train_epoch_' + str(epoch) + '.pth')
def train(train_loader, model, optimizer, epoch, batch_size):
batch_time = AverageMeter()
data_time = AverageMeter()
loss_meter = None
model.train()
end = time.time()
for i, (img_list, label_list) in enumerate(train_loader):
if img_list[0].shape[0] < batch_size:
continue
data_time.update(time.time() - end)
current_iter = (epoch - 1) * len(train_loader) + i + 1
max_iter = args.epochs * len(train_loader)
img_list = [img.to(torch.device("cuda")) for img in img_list]
label_list = [label.to(torch.device("cuda")) for label in label_list]
output = model(img_list=img_list, label_list=label_list, get_loss=True)
total_loss = output['loss']['total'].sum()
optimizer.zero_grad()
total_loss.backward()
optimizer.step()
if loss_meter is None:
loss_meter = {}
for loss_type, _ in output['loss'].items():
loss_meter[loss_type] = AverageMeter()
for loss_type, loss_value in output['loss'].items():
loss_meter[loss_type].update(loss_value.mean().data,
img_list[0].size(0))
batch_time.update(time.time() - end)
end = time.time()
# calculate remain time
remain_iter = max_iter - current_iter
remain_time = remain_iter * batch_time.avg
t_m, t_s = divmod(remain_time, 60)
t_h, t_m = divmod(t_m, 60)
remain_time = '{:02d}:{:02d}:{:02d}'.format(
int(t_h), int(t_m), int(t_s))
if (i + 1) % args.print_freq == 0:
logger.info('Epoch: [{}/{}][{}/{}] '
'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
'Batch {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Remain {remain_time}.'.format(
epoch,
args.epochs,
i + 1,
len(train_loader),
batch_time=batch_time,
data_time=data_time,
remain_time=remain_time))
for loss_type, loss_value in loss_meter.items():
logger.info('Loss {} {loss_meter.val:.4f} '.format(
loss_type, loss_meter=loss_value))
writer.add_scalar('total_loss_train_batch',
loss_meter['total'].val.cpu().numpy(), current_iter)
return loss_meter['total'].avg.cpu().numpy()
def validate(val_loader, model):
logger.info('>>>>>>>>>>>>>>>> Start Evaluation >>>>>>>>>>>>>>>>')
batch_time = AverageMeter()
data_time = AverageMeter()
loss_meter = None
epe_meter = AverageMeter()
model.eval()
end = time.time()
with torch.no_grad():
for i, (img_list, label_list) in enumerate(val_loader):
data_time.update(time.time() - end)
img_list = [img.to(torch.device("cuda")) for img in img_list]
label_list = [
label.to(torch.device("cuda")) for label in label_list
]
output = model(
img_list=img_list,
label_list=label_list,
get_loss=True,
get_epe=True,
get_vis=i % args.visual_freq == 0)
epe_meter.update(output['epe'].mean().data, img_list[0].size(0))
if loss_meter is None:
loss_meter = {}
for loss_type, _ in output['loss'].items():
loss_meter[loss_type] = AverageMeter()
for loss_type, loss_value in output['loss'].items():
loss_meter[loss_type].update(loss_value.mean().data,
img_list[0].size(0))
batch_time.update(time.time() - end)
end = time.time()
if (i + 1) % args.print_freq == 0:
logger.info(
'Test: [{}/{}] '
'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
'Batch {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'EPE {epe_meter.val:.4f} ({epe_meter.avg:.4f}).'.format(
i + 1,
len(val_loader),
data_time=data_time,
batch_time=batch_time,
epe_meter=epe_meter))
for loss_type, loss_value in loss_meter.items():
logger.info('Loss {} {loss_meter.val:.4f} '.format(
loss_type, loss_meter=loss_value))
if 'vis' in output.keys():
for b in range(output['vis'].size(0)):
writer.add_image('Visualization_%d' % b, output['vis'][b],
i)
logger.info(
'Val result: EPE {epe_meter.avg:.3f}.'.format(epe_meter=epe_meter))
logger.info('<<<<<<<<<<<<<<<<< End Evaluation <<<<<<<<<<<<<<<<<')
return loss_meter['total'].avg.cpu().numpy(), epe_meter.avg
def get_lr_scheduler(optimizer, dataset_name):
if dataset_name in ['FlyingChairs', 'FlyingThings3D']:
milestones = [70, 100, 130, 160]
elif dataset_name == 'KITTI':
milestones = [1000, 1500]
elif dataset_name == 'MPISintel':
milestones = [600, 900]
else:
raise ValueError('Unknown dataset name {}'.format(dataset_name))
scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, milestones=milestones, gamma=0.5)
return scheduler
if __name__ == '__main__':
main()