-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathtrain.py
executable file
·387 lines (328 loc) · 17.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
#!/usr/bin/env python
"""Train UNet for the Kaggle TGS salt identification challenge: https://www.kaggle.com/c/tgs-salt-identification-challenge"""
__author__ = 'Erdene-Ochir Tuguldur, Yuan Xu'
import time
import argparse
import os
from datetime import datetime
import socket
from pathlib import Path
from tqdm import tqdm, trange
from tensorboardX import SummaryWriter
import torch
from torch.utils.data import DataLoader, ConcatDataset
from torchvision.transforms import *
import torchvision.utils as vutils
from utils.metrics import calc_metric
from datasets import *
from transforms import *
import models
from utils import create_optimizer, choose_device, create_lr_scheduler
parser = argparse.ArgumentParser(description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--comment", type=str, default='', help='comment in tensorboard title')
parser.add_argument('--device', default='auto', choices=['cuda', 'cpu'], help='running with cpu or cuda')
parser.add_argument("--data-fold", default='fold0', choices=['fold{}'.format(s) for s in ['01'] + list(range(10))],
help='name of data split fold')
parser.add_argument("--batch-size", type=int, default=64, help='batch size')
parser.add_argument("--dataload-workers-nums", type=int, default=8, help='number of workers for dataloader')
parser.add_argument("--weight-decay", type=float, default=0.0001, help='weight decay')
parser.add_argument("--optim", choices=['sgd', 'adam', 'adamw'], default='sgd',
help='choices of optimization algorithms')
parser.add_argument('--fp16-loss-scale', default=None, type=float,
help='loss scale factor for mixed-precision training, 0 means dynamic loss scale')
parser.add_argument('--gradient-accumulation', type=int, default=1,
help='accumulate gradients over number of batches')
parser.add_argument("--learning-rate", type=float, default=0.01, help='learning rate for optimization')
parser.add_argument("--lr-scheduler", choices=['plateau', 'step', 'milestones', 'cos', 'findlr', 'noam', 'clr'],
default='step', help='method to adjust learning rate')
parser.add_argument("--lr-scheduler-patience", type=int, default=15,
help='lr scheduler plateau: Number of epochs with no improvement after which learning rate will be reduced')
parser.add_argument("--lr-scheduler-step-size", type=int, default=100,
help='lr scheduler step: number of epochs of learning rate decay.')
parser.add_argument("--lr-scheduler-gamma", type=float, default=0.1,
help='learning rate is multiplied by the gamma to decrease it')
parser.add_argument("--lr-scheduler-warmup", type=int, default=10,
help='The number of epochs to linearly increase the learning rate. (noam only)')
parser.add_argument("--max-epochs", type=int, default=350, help='max number of epochs')
parser.add_argument("--resume", type=str, help='checkpoint file to resume')
parser.add_argument('--resume-without-optimizer', action='store_true', help='resume but don\'t use optimizer state')
parser.add_argument("--model", choices=['unet', 'danet'], default='unet', help='model of NN')
parser.add_argument("--loss-on-center", action='store_true', help='loss on image without padding')
parser.add_argument("--drop-mask-threshold", type=int, default=0, help='drop problematic masks during training')
parser.add_argument("--debug", action='store_true', help='write debug images')
parser.add_argument("--disable-cutout", action='store_true', help='disable cutout data augmentation')
parser.add_argument('--pretrained', default='imagenet', choices=('imagenet', 'coco', 'oid'),
help='dataset name for pretrained model')
parser.add_argument("--basenet", choices=models.BASENET_CHOICES, default='resnet34', help='model of basenet')
current_time = datetime.now().strftime('%b%d_%H-%M-%S')
default_log_dir = os.path.join('runs', current_time + '_' + socket.gethostname())
parser.add_argument('--log-dir', type=str, default=default_log_dir, help='Location to save logs and checkpoints')
parser.add_argument('--vtf', action='store_true', help='validation time flip augmentation')
parser.add_argument('--resize', action='store_true', help='resize to 128x128 instead of reflective padding')
args = parser.parse_args()
if args.resize:
# if resize is used, loss on center doesn't make sense
args.loss_on_center = False
device = choose_device(args.device)
use_gpu = device.type == 'cuda'
orig_img_size = 101
img_size = 128
padding = compute_padding(orig_img_size, orig_img_size, img_size)
geometric_transform_prob = 0.5 * 0.25
geometric_transform = Compose([RandomApply([CropAndRescale(max_scale=0.2)], p=geometric_transform_prob),
RandomApply([HorizontalShear(max_scale=0.07)], p=geometric_transform_prob),
RandomApply([Rotation(max_angle=15)], p=geometric_transform_prob),
RandomApply([ElasticDeformation(max_distort=0.15)], p=geometric_transform_prob)])
brightness_transform_prob = 0.5 * 0.33
brightness_transform = Compose([RandomApply([BrightnessShift(max_value=0.1)], p=brightness_transform_prob),
RandomApply([BrightnessScaling(max_value=0.08)], p=brightness_transform_prob),
RandomApply([GammaChange(max_value=0.08)], p=brightness_transform_prob)])
train_transform = Compose([PrepareImageAndMask(),
RandomApply([Cutout(1, 30)], p=0.0 if args.disable_cutout else 0.5),
RandomApply([HorizontalFlip()]),
geometric_transform,
brightness_transform,
ResizeToNxN(img_size) if args.resize else PadToNxN(img_size), HWCtoCHW()])
valid_transform = Compose([PrepareImageAndMask(),
ResizeToNxN(img_size) if args.resize else PadToNxN(img_size), HWCtoCHW()])
data_fold_id = args.data_fold[len('fold'):]
if len(data_fold_id) == 1:
list_train = 'list_train{}_3600'
list_vaild = 'list_valid{}_400'
elif len(data_fold_id) == 2:
list_train = 'list_train{}_3200'
list_vaild = 'list_valid{}_800'
else:
raise RuntimeError("unknown fold {}".format(args.data_fold))
train_dataset = SaltIdentification(mode='train', name=list_train.format(data_fold_id),
transform=train_transform, preload=True, mask_threshold=args.drop_mask_threshold)
valid_dataset = SaltIdentification(mode='train', name=list_vaild.format(data_fold_id),
transform=valid_transform, preload=True)
if args.vtf:
flipped_valid_transform = Compose([PrepareImageAndMask(), HorizontalFlip(),
ResizeToNxN(img_size) if args.resize else PadToNxN(img_size), HWCtoCHW()])
flipped_valid_dataset = SaltIdentification(mode='train', name='list_valid{}_400'.format(data_fold_id),
transform=flipped_valid_transform, preload=True)
valid_dataset = ConcatDataset([valid_dataset, flipped_valid_dataset])
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size,
num_workers=args.dataload_workers_nums, drop_last=True)
valid_dataloader = DataLoader(valid_dataset, shuffle=False, batch_size=args.batch_size,
num_workers=args.dataload_workers_nums)
# a name used to save checkpoints etc.
full_name = '%s_%s_%s_%s_bs%d_lr%.1e_wd%.1e' % (
args.model, args.data_fold, args.optim, args.lr_scheduler, args.batch_size, args.learning_rate, args.weight_decay)
if args.comment:
full_name = '%s_%s' % (full_name, args.comment)
model = models.create(args.model, basenet=args.basenet, pretrained=args.pretrained)
model, optimizer = create_optimizer(model, args.optim, args.learning_rate, args.weight_decay,
momentum=0.9,
fp16_loss_scale=args.fp16_loss_scale,
device=device)
lr_scheduler = create_lr_scheduler(optimizer, **vars(args))
start_timestamp = int(time.time() * 1000)
start_epoch = 0
best_loss = 1e10
best_metric = 0
best_accuracy = 0
global_step = 0
if args.resume:
print("resuming a checkpoint '%s'" % args.resume)
if os.path.exists(args.resume):
saved_checkpoint = torch.load(args.resume)
old_model = models.load(saved_checkpoint['model_file'])
model.module.load_state_dict(old_model.state_dict())
model.float()
if not args.resume_without_optimizer:
optimizer.load_state_dict(saved_checkpoint['optimizer'])
lr_scheduler.load_state_dict(saved_checkpoint['lr_scheduler'])
best_loss = saved_checkpoint.get('best_loss', best_loss)
best_metric = saved_checkpoint.get('best_metric', best_metric)
best_accuracy = saved_checkpoint.get('best_accuracy', best_accuracy)
start_epoch = saved_checkpoint.get('epoch', start_epoch)
global_step = saved_checkpoint.get('step', global_step)
del saved_checkpoint # reduce memory
del old_model
else:
print(">\n>\n>\n>\n>\n>")
print(">Warning the checkpoint '%s' doesn't exist! training from scratch!" % args.resume)
print(">\n>\n>\n>\n>\n>")
def get_lr():
return optimizer.param_groups[0]['lr']
print("logging into {}".format(args.log_dir))
writer = SummaryWriter(log_dir=args.log_dir)
checkpoint_dir = Path(args.log_dir) / 'checkpoints'
checkpoint_dir.mkdir(parents=True, exist_ok=True)
models_dir = Path(args.log_dir) / 'models'
models_dir.mkdir(parents=True, exist_ok=True)
def remove_padding(data):
d_y0, d_y1, d_x0, d_x1 = padding
y0, y1, x0, x1 = d_y0, d_y0 + orig_img_size, d_x0, d_x0 + orig_img_size
if data.dim() == 3:
return data[:, y0:y1, x0:x1]
elif data.dim() == 4:
return data[:, :, y0:y1, x0:x1]
raise RuntimeError("unspported dim {}".format(data.dim()))
def train(epoch, phase='train'):
global global_step, best_loss, best_metric, best_accuracy
if phase == 'train':
writer.add_scalar('%s/learning_rate' % phase, get_lr(), epoch)
model.train() if phase == 'train' else model.eval()
torch.set_grad_enabled(True) if phase == 'train' else torch.set_grad_enabled(False)
dataloader = train_dataloader if phase == 'train' else valid_dataloader
running_loss, running_metric, running_accuracy = 0.0, 0.0, 0.0
worst_loss, worst_metric = best_loss, best_metric
it, total = 0, 0
if phase == 'valid':
total_probs = []
total_truth = []
pbar_disable = False if epoch == start_epoch else None
pbar = tqdm(dataloader, unit="images", unit_scale=dataloader.batch_size, disable=pbar_disable)
for batch in pbar:
image_ids, inputs, targets = batch['image_id'], batch['input'], batch['mask']
if use_gpu:
inputs = inputs.cuda()
targets = targets.cuda()
# forward
logit, logit_pixel, logit_image = model(inputs)
# look at the center only
if args.loss_on_center:
logit = remove_padding(logit)
logit_pixel = (remove_padding(l) for l in logit_pixel)
targets = remove_padding(targets)
truth_pixel = targets
truth_image = (truth_pixel.sum(dim=(1, 2)) > 0).float()
loss = models.deep_supervised_criterion(logit, logit_pixel, logit_image, truth_pixel, truth_image)
if not args.loss_on_center and not args.resize:
logit = remove_padding(logit)
targets = remove_padding(targets)
probs = torch.sigmoid(logit).squeeze(1)
# predictions = probs.squeeze(1) > 0.5
if phase == 'train':
# backward
optimizer.backward(loss / args.gradient_accumulation)
if it % args.gradient_accumulation == 0:
optimizer.step()
optimizer.zero_grad()
# statistics
it += 1
global_step += 1
loss = loss.item()
running_loss += (loss * targets.size(0))
total += targets.size(0)
writer.add_scalar('%s/loss' % phase, loss, global_step)
targets_numpy = targets.cpu().numpy()
probs_numpy = probs.cpu().detach().numpy()
predictions_numpy = probs_numpy > 0.5 # predictions.cpu().numpy()
metric_array = calc_metric(targets_numpy, predictions_numpy, type='iou', size_average=False)
metric = metric_array.mean()
running_metric += metric_array.sum()
running_accuracy += calc_metric(targets_numpy, predictions_numpy, type='pixel_accuracy',
size_average=False).sum()
if phase == 'valid':
total_truth.append(targets_numpy)
total_probs.append(probs_numpy)
visualize_output = False
if worst_loss > loss:
worst_loss = loss
visualize_output = True
if worst_metric < metric:
worst_metric = metric
visualize_output = True
if visualize_output and args.debug:
# sort samples by metric
ind = np.argsort(metric_array)
images = remove_padding(inputs.cpu())
images = images[ind]
probs = probs[ind].cpu()
predictions = predictions[ind].cpu()
targets = targets[ind].cpu()
preds = torch.cat([probs] * 3, 1)
mask = torch.cat([targets.unsqueeze(1)] * 3, 1)
all = images.clone()
all[:, 0] = torch.max(images[:, 0], predictions.float())
all[:, 1] = torch.max(images[:, 1], targets)
all = torch.cat((torch.cat((all, images), 3), torch.cat((preds, mask), 3)), 2)
all_grid = vutils.make_grid(all, nrow=4, normalize=False, pad_value=1)
writer.add_image('%s/img-mask-pred' % phase, all_grid, global_step)
# update the progress bar
pbar.set_postfix({
'loss': "%.05f" % (running_loss / total),
'metric': "%.03f" % (running_metric / total)
})
epoch_loss = running_loss / total
epoch_metric = running_metric / total
epoch_accuracy = running_accuracy / total
writer.add_scalar('%s/metric' % phase, epoch_metric, epoch)
writer.add_scalar('%s/accuracy' % phase, epoch_accuracy, epoch)
writer.add_scalar('%s/epoch_loss' % phase, epoch_loss, epoch)
if phase == 'valid':
def save_checkpoint(name):
cycle = ('-cycle%d' % (epoch // args.lr_scheduler_step_size)) if args.lr_scheduler == 'clr' else ''
model_name = name + '-model'
model_file_name = '%d-%s-%s%s.pth' % (start_timestamp, model_name, full_name, cycle)
model_file = models_dir / model_file_name
models.save(model, model_file)
mode_file_simple = Path(models_dir / (model_name + '-%s%s.pth' % (args.data_fold, cycle)))
if mode_file_simple.is_symlink() or mode_file_simple.exists():
mode_file_simple.unlink()
mode_file_simple.symlink_to(model_file.relative_to(mode_file_simple.parent))
checkpoint = {
'epoch': epoch,
'step': global_step,
'model_file': str(model_file),
'best_loss': best_loss,
'best_metric': best_metric,
'best_accuracy': best_accuracy,
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict()
}
checkpoint_filename = name + '-checkpoint-%s%s.pth' % (full_name, cycle)
checkpoint_file = checkpoint_dir / checkpoint_filename
torch.save(checkpoint, checkpoint_file)
checkpoint_file_simple = Path(checkpoint_dir / (name + '-checkpoint-%s%s.pth' % (args.data_fold, cycle)))
if checkpoint_file_simple.is_symlink() or checkpoint_file_simple.exists():
checkpoint_file_simple.unlink()
checkpoint_file_simple.symlink_to(checkpoint_file.relative_to(checkpoint_file_simple.parent))
if epoch_loss < best_loss:
best_loss = epoch_loss
save_checkpoint('best-loss')
if epoch_metric > best_metric:
best_metric = epoch_metric
save_checkpoint('best-metric')
if epoch_accuracy > best_accuracy:
best_accuracy = epoch_accuracy
save_checkpoint('best-accuracy')
save_checkpoint('last')
return epoch_loss, epoch_metric, epoch_accuracy
print("training %s..." % args.model)
pbar_epoch = trange(start_epoch, args.max_epochs)
# import cProfile
# pr = cProfile.Profile()
# pr.enable()
for epoch in pbar_epoch:
if args.lr_scheduler != 'plateau':
if args.lr_scheduler == 'clr':
if epoch % args.lr_scheduler_step_size == 0:
# reset best loss and metric for every cycle
best_loss = 1e10
best_metric = 0
lr_scheduler.step(epoch % args.lr_scheduler_step_size)
else:
lr_scheduler.step()
train_epoch_loss, train_epoch_metric, train_epoch_epoch_accuracy = train(epoch, phase='train')
valid_epoch_loss, valid_epoch_metric, valid_epoch_epoch_accuracy = train(epoch, phase='valid')
if args.lr_scheduler == 'plateau':
lr_scheduler.step(metrics=valid_epoch_loss)
pbar_epoch.set_postfix({'lr': '%.02e' % get_lr(),
'train': '%.03f/%.03f/%.03f' % (
train_epoch_loss, train_epoch_metric, train_epoch_epoch_accuracy),
'val': '%.03f/%.03f/%.03f' % (
valid_epoch_loss, valid_epoch_metric, valid_epoch_epoch_accuracy),
'best val': '%.03f/%.03f/%.03f' % (best_loss, best_metric, best_accuracy)},
refresh=False)
# break
# pr.disable()
# pr.print_stats('cumulative')
# pr.dump_stats('test.profile')
print("finished data fold {}".format(args.data_fold))
print("best valid loss: %.05f, best valid metric: %.03f%%" % (best_loss, best_metric))