forked from Yona-Appletree/LEDscape
-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathws281x.p
270 lines (219 loc) · 6.93 KB
/
ws281x.p
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
// \file
//* WS281x LED strip driver for the BeagleBone Black.
//*
//* Drives up to 32 strips using the PRU hardware. The ARM writes
//* rendered frames into shared DDR memory and sets a flag to indicate
//* how many pixels wide the image is. The PRU then bit bangs the signal
//* out the 32 GPIO pins and sets a done flag.
//*
//* To stop, the ARM can write a 0xFF to the command, which will
//* cause the PRU code to exit.
//*
//* At 800 KHz:
//* 0 is 0.25 usec high, 1 usec low
//* 1 is 0.60 usec high, 0.65 usec low
//* Reset is 50 usec
//
// Pins are not contiguous.
// 1 pins on GPIO0: 2
//
// each pixel is stored in 4 bytes in the order GRBA (4th byte is ignored)
//
// while len > 0:
// for bit# = 24 down to 0:
// delay 600 ns
// read 1 registers of data, build zero map for gpio0
//
// Send start pulse on all pins on gpio0, gpio1 and gpio3
// delay 250 ns
// bring zero pins low
// delay 300 ns
// bring all pins low
// increment address by 32
//*
//* So to clock this out:
//* ____
//* | | |______|
//* 0 250 600 1250 offset
//* 250 350 650 delta
//*
//*/
.origin 0
.entrypoint START
#include "ws281x.hp"
#define NOP mov r0, r0
//===============================
// GPIO Pin Mapping
// Pins in GPIO0
#define gpio0_bit0 2
#define GPIO0_LED_MASK (0\
|(1<<gpio0_bit0)\
)
/** Register map */
#define data_addr r0
#define data_len r1
#define gpio0_zeros r2
#define bit_num r6
#define sleep_counter r7
#define addr_reg r8
#define temp_reg r9
#define temp2_reg r27
// r10 - r26 are used for temp storage and bitmap processing
/** Sleep a given number of nanoseconds with 10 ns resolution.
*
* This busy waits for a given number of cycles. Not for use
* with things that must happen on a tight schedule.
*/
.macro SLEEPNS
.mparam ns,inst,lab
#ifdef CONFIG_WS2812
MOV sleep_counter, (ns/5)-1-inst // ws2812 -- low speed
#else
MOV sleep_counter, (ns/10)-1-inst // ws2811 -- high speed
#endif
lab:
SUB sleep_counter, sleep_counter, 1
QBNE lab, sleep_counter, 0
.endm
/** Wait for the cycle counter to reach a given value */
.macro WAITNS
.mparam ns,lab
MOV r8, 0x22000 // control register
lab:
LBBO r9, r8, 0xC, 4 // read the cycle counter
// SUB r9, r9, sleep_counter
#ifdef CONFIG_WS2812
QBGT lab, r9, 2*(ns)/5
#else
QBGT lab, r9, (ns)/5
#endif
.endm
/** Reset the cycle counter */
.macro RESET_COUNTER
// Disable the counter and clear it, then re-enable it
MOV addr_reg, 0x22000 // control register
LBBO r9, addr_reg, 0, 4
CLR r9, r9, 3 // disable counter bit
SBBO r9, addr_reg, 0, 4 // write it back
MOV temp2_reg, 0
SBBO temp2_reg, addr_reg, 0xC, 4 // clear the timer
SET r9, r9, 3 // enable counter bit
SBBO r9, addr_reg, 0, 4 // write it back
// Read the current counter value
// Should be zero.
LBBO sleep_counter, addr_reg, 0xC, 4
.endm
START:
// Enable OCP master port
// clear the STANDBY_INIT bit in the SYSCFG register,
// otherwise the PRU will not be able to write outside the
// PRU memory space and to the BeagleBon's pins.
LBCO r0, C4, 4, 4
CLR r0, r0, 4
SBCO r0, C4, 4, 4
// Configure the programmable pointer register for PRU0 by setting
// c28_pointer[15:0] field to 0x0120. This will make C28 point to
// 0x00012000 (PRU shared RAM).
MOV r0, 0x00000120
MOV r1, CTPPR_0
ST32 r0, r1
// Configure the programmable pointer register for PRU0 by setting
// c31_pointer[15:0] field to 0x0010. This will make C31 point to
// 0x80001000 (DDR memory).
MOV r0, 0x00100000
MOV r1, CTPPR_1
ST32 r0, r1
// Write a 0x1 into the response field so that they know we have started
MOV r2, #0x1
SBCO r2, CONST_PRUDRAM, 12, 4
MOV r20, 0xFFFFFFFF
// Wait for the start condition from the main program to indicate
// that we have a rendered frame ready to clock out. This also
// handles the exit case if an invalid value is written to the start
// start position.
_LOOP:
// Load the pointer to the buffer from PRU DRAM into r0 and the
// length (in bytes-bit words) into r1.
// start command into r2
LBCO data_addr, CONST_PRUDRAM, 0, 12
// Wait for a non-zero command
QBEQ _LOOP, r2, #0
// Reset the sleep timer
RESET_COUNTER
// Zero out the start command so that they know we have received it
// This allows maximum speed frame drawing since they know that they
// can now swap the frame buffer pointer and write a new start command.
MOV r3, 0
SBCO r3, CONST_PRUDRAM, 8, 4
// Command of 0xFF is the signal to exit
QBEQ EXIT, r2, #0xFF
WORD_LOOP:
// for bit in 24 to 0
MOV bit_num, 24
BIT_LOOP:
SUB bit_num, bit_num, 1
/** Macro to generate the mask of which bits are zero.
* For each of these registers, set the
* corresponding bit in the gpio0_zeros register if
* the current bit is set in the strided register.
*/
#define TEST_BIT(regN,gpioN,bitN) \
QBBS gpioN##_##regN##_skip, regN, bit_num; \
SET gpioN##_zeros, gpioN##_zeros, gpioN##_##bitN ; \
gpioN##_##regN##_skip: ; \
// Load 1 register of data, starting at r10
LBBO r10, r0, 0, 4
MOV gpio0_zeros, 0
TEST_BIT(r10, gpio0, bit0)
// Load the address(es) of the GPIO devices
MOV r20, GPIO0_LED_MASK
// Clear lines from last bit
MOV r22, GPIO0 | GPIO_CLEARDATAOUT
WAITNS 900, wait_one_time
SBBO r20, r22, 0, 4
MOV r22, GPIO0 | GPIO_SETDATAOUT
// Wait until the end of the frame (including the time it takes to reset the counter)
WAITNS 1150, wait_frame_spacing_time
RESET_COUNTER
// Send all the start bits
SBBO r20, r22, 0, 4
// Reconfigure r10-13 for clearing the bits
MOV r22, GPIO0 | GPIO_CLEARDATAOUT
WAITNS 240, wait_zero_time
// turn off all the zero bits
SBBO gpio0_zeros, r22, 0, 4
// One bits get turned off in the next round of the loop
QBNE BIT_LOOP, bit_num, 0
// The RGB streams have been clocked out
// Move to the next pixel on each row
ADD data_addr, data_addr, 4
SUB data_len, data_len, 1
QBNE WORD_LOOP, data_len, #0
// Final clear for the word
MOV r20, GPIO0_LED_MASK
MOV r10, GPIO0 | GPIO_CLEARDATAOUT
WAITNS 1000, end_of_frame_clear_wait
SBBO r20, r10, 0, 4
// Delay at least 50 usec; this is the required reset
// time for the LED strip to update with the new pixels.
SLEEPNS 50000, 1, reset_time
// Write out that we are done!
// Store a non-zero response in the buffer so that they know that we are done
// aso a quick hack, we write the counter so that we know how
// long it took to write out.
MOV r8, 0x22000 // control register
LBBO r2, r8, 0xC, 4
SBCO r2, CONST_PRUDRAM, 12, 4
// Go back to waiting for the next frame buffer
QBA _LOOP
EXIT:
// Write a 0xFF into the response field so that they know we're done
MOV r2, #0xFF
SBCO r2, CONST_PRUDRAM, 12, 4
#ifdef AM33XX
// Send notification to Host for program completion
MOV R31.b0, PRU0_ARM_INTERRUPT+16
#else
MOV R31.b0, PRU0_ARM_INTERRUPT
#endif
HALT