-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathinference_to_one.py
68 lines (56 loc) · 2.81 KB
/
inference_to_one.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import os
import numpy as np
import argparse
from models.wenet.bin.recognize import AsrReco
from models import BLSTMConversionModel
from config import Hparams
from utils import load_wav, _preemphasize, melspectrogram,inv_mel_spectrogram, inv_preemphasize, save_wav, F0Extractor,reform_input_audio
import torch
def main():
hps = Hparams
parser = argparse.ArgumentParser('VC inference')
parser.add_argument('--src_wav', type=str, help='source wav file path')
parser.add_argument('--ckpt', type=str, help='model ckpt path')
parser.add_argument('--save_dir', type=str, help='synthesized wav save directory')
args = parser.parse_args()
src_wav_arr = load_wav(args.src_wav)
src_wav_arr[src_wav_arr>1]=1.
pre_emphasized_wav = _preemphasize(src_wav_arr)
# 1. extract bnfs
print('Set up BNFs extraction network')
# Set up network
bnf_config = './config/asr_config.yaml'
asr_checkpoint_path = './pretrained_model/asr_model/final.pt'
print('Loading BNFs extractor from {}'.format(bnf_config))
bnf_extractor = AsrReco(bnf_config, asr_checkpoint_path,False)
fid = args.src_wav.split('/')[-1].split('.wav')[0]
reform_input_audio(args.src_wav,fid+'-temp.wav')
BNFs, feat_lengths, PPGs = bnf_extractor.recognize(fid+'-temp.wav')
# 2. extract normed_f0, mel-spectrogram
pitch_ext = F0Extractor("praat",sample_rate=16000)
f0 = pitch_ext.extract_f0_by_frame(src_wav_arr,True)
# mel-spectrogram is extracted for comparison
mel_spec = melspectrogram(pre_emphasized_wav).astype(np.float32).T
# 3. prepare inputs
min_len = min(f0.shape[0], BNFs.shape[0])
vc_inputs = np.concatenate([BNFs[:min_len, :], f0[:min_len, :]], axis=1)
vc_inputs = np.expand_dims(vc_inputs, axis=1) # [time, batch, dim]
# 4. setup vc model and do the inference
model = BLSTMConversionModel(in_channels=hps.Audio.bn_dim + 2,
out_channels=hps.Audio.num_mels,
lstm_hidden=hps.BLSTMConversionModel.lstm_hidden)
device = torch.device('cpu')
model.load_state_dict(torch.load(args.ckpt, map_location=device))
model.eval()
predicted_mels = model(torch.tensor(vc_inputs).to(torch.float32))
predicted_mels = np.squeeze(predicted_mels.detach().numpy(), axis=1)
# 5. synthesize wav
synthesized_wav = inv_preemphasize(inv_mel_spectrogram(predicted_mels.T))
resynthesized_wav = inv_preemphasize(inv_mel_spectrogram(mel_spec.T))
ckpt_name = args.ckpt.split('/')[-1].split('.')[0]
wav_name = args.src_wav.split('/')[-1].split('.')[0]
save_wav(synthesized_wav, os.path.join(args.save_dir, '{}-{}-converted.wav'.format(wav_name, ckpt_name)))
save_wav(resynthesized_wav, os.path.join(args.save_dir, '{}-{}-src-resyn.wav'.format(wav_name, ckpt_name)))
return
if __name__ == '__main__':
main()