-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathloss.py
29 lines (26 loc) · 1.09 KB
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
from torch import nn
from regularizer import L1
import torch
class BICELoss(nn.Module):
def __init__(self, temp=0.001, q_reg=0.0, d_reg=0.0, T=1000,):
super().__init__()
self.ce = nn.CrossEntropyLoss()
self.q_regularizer = L1(q_reg, T)
self.d_regularizer = L1(d_reg, T)
self.temp = temp
def forward(self, sparse_texts, sparse_imgs, dense_texts, dense_imgs):
sparse_i2t_scores = sparse_imgs @ sparse_texts.t()
sparse_t2i_scores = sparse_i2t_scores.t()
with torch.no_grad():
scores_dense_i2t = dense_imgs @ dense_texts.t()
prob_dense_i2t = torch.softmax(
scores_dense_i2t/self.temp, dim=1)
prob_dense_t2i = torch.softmax(
scores_dense_i2t.t()/self.temp, dim=1)
loss = (self.ce(sparse_i2t_scores, prob_dense_i2t) +
self.ce(sparse_t2i_scores, prob_dense_t2i))/2
reg = (self.q_regularizer(sparse_texts) +
self.d_regularizer(sparse_imgs))/2
self.q_regularizer.step()
self.d_regularizer.step()
return loss, reg