forked from rust-osdev/volatile
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlib.rs
265 lines (243 loc) · 7.48 KB
/
lib.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
//! Provides wrapper types `Volatile`, `ReadOnly`, `WriteOnly`, `ReadWrite`, which wrap any copy-able type and allows for
//! volatile memory access to wrapped value. Volatile memory accesses are never optimized away by
//! the compiler, and are useful in many low-level systems programming and concurrent contexts.
//!
//! The wrapper types *do not* enforce any atomicity guarantees; to also get atomicity, consider
//! looking at the `Atomic` wrapper type found in `libcore` or `libstd`.
//!
//! These wrappers do not depend on the standard library and never panic.
//!
//! # Dealing with Volatile Pointers
//!
//! Frequently, one may have to deal with volatile pointers, eg, writes to specific memory
//! locations. The canonical way to solve this is to cast the pointer to a volatile wrapper
//! directly, eg:
//!
//! ```rust
//! use volatile::Volatile;
//!
//! let mut_ptr = 0xFEE00000 as *mut u32;
//!
//! let volatile_ptr = mut_ptr as *mut Volatile<u32>;
//! ```
//!
//! and then perform operations on the pointer as usual in a volatile way. This method works as all
//! of the volatile wrapper types are the same size as their contained values.
#![no_std]
#![feature(const_fn_trait_bound)]
#[cfg(feature = "zerocopy")] extern crate zerocopy;
use core::ptr;
#[cfg(feature = "zerocopy")] use zerocopy::FromBytes;
/// A wrapper type around a volatile variable, which allows for volatile reads and writes
/// to the contained value. The stored type needs to be `Copy`, as volatile reads and writes
/// take and return copies of the value.
///
/// The size of this struct is the same as the size of the contained type.
#[derive(Debug, Default)]
#[cfg_attr(feature = "zerocopy", derive(FromBytes))]
#[repr(transparent)]
pub struct Volatile<T: Copy>(T);
impl<T: Copy> Volatile<T> {
/// Construct a new volatile instance wrapping the given value.
///
/// ```rust
/// use volatile::Volatile;
///
/// let value = Volatile::new(0u32);
/// ```
///
/// # Panics
///
/// This method never panics.
pub const fn new(value: T) -> Volatile<T> {
Volatile(value)
}
/// Performs a volatile read of the contained value, returning a copy
/// of the read value. Volatile reads are guaranteed not to be optimized
/// away by the compiler, but by themselves do not have atomic ordering
/// guarantees. To also get atomicity, consider looking at the `Atomic` wrapper type.
///
/// ```rust
/// use volatile::Volatile;
///
/// let value = Volatile::new(42u32);
///
/// assert_eq!(value.read(), 42u32);
/// ```
///
/// # Panics
///
/// This method never panics.
pub fn read(&self) -> T {
// UNSAFE: Safe, as we know that our internal value exists.
unsafe { ptr::read_volatile(&self.0) }
}
/// Performs a volatile write, setting the contained value to the given value `value`. Volatile
/// writes are guaranteed to not be optimized away by the compiler, but by themselves do not
/// have atomic ordering guarantees. To also get atomicity, consider looking at the `Atomic`
/// wrapper type.
///
/// ```rust
/// use volatile::Volatile;
///
/// let mut value = Volatile::new(0u32);
///
/// value.write(42u32);
///
/// assert_eq!(value.read(), 42u32);
/// ```
///
/// # Panics
///
/// This method never panics.
pub fn write(&mut self, value: T) {
// UNSAFE: Safe, as we know that our internal value exists.
unsafe { ptr::write_volatile(&mut self.0, value) };
}
/// Performs a volatile read of the contained value, passes a mutable reference to it to the
/// function `f`, and then performs a volatile write of the (potentially updated) value back to
/// the contained value.
///
/// ```rust
/// use volatile::Volatile;
///
/// let mut value = Volatile::new(21u32);
///
/// value.update(|val_ref| *val_ref *= 2);
///
/// assert_eq!(value.read(), 42u32);
/// ```
///
/// # Panics
///
/// Ths method never panics.
pub fn update<F>(&mut self, f: F)
where
F: FnOnce(&mut T),
{
let mut value = self.read();
f(&mut value);
self.write(value);
}
}
impl<T: Copy> Clone for Volatile<T> {
fn clone(&self) -> Self {
Volatile(self.read())
}
}
/// A volatile wrapper which only allows read operations.
///
/// The size of this struct is the same as the contained type.
#[derive(Debug, Clone, Default)]
#[repr(transparent)]
#[cfg_attr(feature = "zerocopy", derive(FromBytes))]
pub struct ReadOnly<T: Copy>(Volatile<T>);
impl<T: Copy> ReadOnly<T> {
/// Construct a new read-only volatile wrapper wrapping the given value.
///
/// ```rust
/// use volatile::ReadOnly;
///
/// let value = ReadOnly::new(42u32);
/// ```
///
/// # Panics
///
/// This function never panics.
pub const fn new(value: T) -> ReadOnly<T> {
ReadOnly(Volatile::new(value))
}
/// Perform a volatile read of the contained value, returning a copy of the read value.
/// Functionally equivalent to `Volatile::read`.
///
/// ```rust
/// use volatile::ReadOnly;
///
/// let value = ReadOnly::new(42u32);
/// assert_eq!(value.read(), 42u32);
/// ```
///
/// # Panics
///
/// This function never panics.
pub fn read(&self) -> T {
self.0.read()
}
}
/// A volatile wrapper which only allows write operations.
///
/// The size of this struct is the same as the contained type.
#[derive(Debug, Clone, Default)]
#[repr(transparent)]
#[cfg_attr(feature = "zerocopy", derive(FromBytes))]
pub struct WriteOnly<T: Copy>(Volatile<T>);
impl<T: Copy> WriteOnly<T> {
/// Constructs a new write only volatile wrapper around the given value.
///
/// ```rust
/// use volatile::WriteOnly;
///
/// let value = WriteOnly::new(0u32);
/// ```
///
/// # Panics
///
/// This function never panics.
pub const fn new(value: T) -> WriteOnly<T> {
WriteOnly(Volatile::new(value))
}
/// Performs a volatile write of value `value` into the contained value. Functionally identical
/// to `Volatile::write`.
///
/// ```rust
/// use volatile::WriteOnly;
///
/// let mut value = WriteOnly::new(0u32);
///
/// value.write(42u32);
/// ```
///
/// # Panics
///
/// This method never panics.
pub fn write(&mut self, value: T) {
self.0.write(value)
}
}
/// A volatile wrapper which allows both read and write operations;
/// functionally equivalent to the `Volatile` type, as it is a type
/// alias for it.
///
/// The size of this struct is the same as the contained type.
pub type ReadWrite<T> = Volatile<T>;
#[cfg(test)]
mod tests {
use super::Volatile;
#[test]
fn test_read() {
assert_eq!(Volatile(42).read(), 42);
}
#[test]
fn test_write() {
let mut volatile = Volatile(42);
volatile.write(50);
assert_eq!(volatile.0, 50);
}
#[test]
fn test_update() {
let mut volatile = Volatile(42);
volatile.update(|v| *v += 1);
assert_eq!(volatile.0, 43);
}
#[test]
fn test_pointer_recast() {
let mut target_value = 0u32;
let target_ptr: *mut u32 = &mut target_value;
let volatile_ptr = target_ptr as *mut Volatile<u32>;
// UNSAFE: Safe, as we know the value exists on the stack.
unsafe {
(*volatile_ptr).write(42u32);
}
assert_eq!(target_value, 42u32);
}
}