- Download SIDD training data, run
python download_data.py --data train --noise real
- Generate image patches from full-resolution training images, run
python generate_patches_sidd.py
- Train MIRNet_v2
cd MIRNetv2
./train.sh Real_Denoising/Options/RealDenoising_MIRNet_v2.yml
Note: This training script uses 8 GPUs by default. To use any other number of GPUs, modify MIRNetv2/train.sh and Real_Denoising/Options/RealDenoising_MIRNet_v2.yml
- Download the pre-trained model and place it in
./pretrained_models/
:
wget https://github.com/swz30/MIRNetv2/releases/download/v1.0.0/real_denoising.pth -P pretrained_models/
- Download SIDD validation data, run
python download_data.py --noise real --data test --dataset SIDD
- To obtain denoised results, run
python test_real_denoising_sidd.py --save_images
- To reproduce PSNR/SSIM scores on SIDD data (Table 3), run
evaluate_sidd.m
- Download the DND benchmark data, run
python download_data.py --noise real --data test --dataset DND
- To obtain denoised results, run
python test_real_denoising_dnd.py --save_images
- To reproduce PSNR/SSIM scores (Table 3), upload the results to the DND benchmark website.