- Download LoL training and testing data, run
python download_data.py --data train-test --dataset Lol
- To train MIRNet_v2, run
cd MIRNetv2
./train.sh Enhancement/Options/Enhancement_MIRNet_v2_Lol.yml
-
For MIT-Adobe Fivek training data, download DNGs from https://data.csail.mit.edu/graphics/fivek/ and then follow this for data preparation nothinglo/Deep-Photo-Enhancer#38
-
Download Fivek mini validation data, run
python download_data.py --data val --dataset FiveK
- Generate image patches from full-resolution training images
python generate_patches_fivek.py
- To train MIRNet_v2, run
cd MIRNetv2
./train.sh Enhancement/Options/Enhancement_MIRNet_v2_FiveK.yml
Note: The above training script uses 8 GPUs by default. To use any other number of GPUs, modify Restormer/train.sh and Enhancement/Options/Enhancement_MIRNet_v2_FiveK.yml
- Download the pre-trained model and place it in
./pretrained_models/
wget https://github.com/swz30/MIRNetv2/releases/download/v1.0.0/enhancement_lol.pth -P pretrained_models/
- Download LoL testset, run
python download_data.py --data test --dataset Lol
- Testing
python test.py --dataset Lol
- Download the pre-trained model and place it in
./pretrained_models/
wget https://github.com/swz30/MIRNetv2/releases/download/v1.0.0/enhancement_fivek.pth -P pretrained_models/
- Download MIT-Adobe Fivek testset, run
python download_data.py --data test --dataset FiveK
- Testing
python test.py --dataset FiveK
evaluate_PSNR_SSIM.m