Skip to content

Latest commit

 

History

History
70 lines (59 loc) · 1.93 KB

README.md

File metadata and controls

70 lines (59 loc) · 1.93 KB

Training

Training on LoL dataset

  • Download LoL training and testing data, run
python download_data.py --data train-test --dataset Lol
  • To train MIRNet_v2, run
cd MIRNetv2
./train.sh Enhancement/Options/Enhancement_MIRNet_v2_Lol.yml

Training on MIT-Adobe Fivek dataset

python download_data.py --data val --dataset FiveK
  • Generate image patches from full-resolution training images
python generate_patches_fivek.py 
  • To train MIRNet_v2, run
cd MIRNetv2
./train.sh Enhancement/Options/Enhancement_MIRNet_v2_FiveK.yml

Note: The above training script uses 8 GPUs by default. To use any other number of GPUs, modify Restormer/train.sh and Enhancement/Options/Enhancement_MIRNet_v2_FiveK.yml

Evaluation

Testing on LoL dataset

  • Download the pre-trained model and place it in ./pretrained_models/
wget https://github.com/swz30/MIRNetv2/releases/download/v1.0.0/enhancement_lol.pth -P pretrained_models/
  • Download LoL testset, run
python download_data.py --data test --dataset Lol
  • Testing
python test.py --dataset Lol

Testing on MIT-Adobe Fivek dataset

  • Download the pre-trained model and place it in ./pretrained_models/
wget https://github.com/swz30/MIRNetv2/releases/download/v1.0.0/enhancement_fivek.pth -P pretrained_models/
  • Download MIT-Adobe Fivek testset, run
python download_data.py --data test --dataset FiveK
  • Testing
python test.py --dataset FiveK

To reproduce PSNR/SSIM scores of the paper (Table 5) on LoL, run this MATLAB script

evaluate_PSNR_SSIM.m