-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpruning_policy.py
31 lines (29 loc) · 1.43 KB
/
pruning_policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import torch
import torch.nn as nn
from torchvision import models
#import cv2
import sys
import numpy as np
def pruning_policy(model, layer_index, weights, filter_index, device):
prev_op = None
offset = -1
op = list(model.modules())[layer_index]
op.weight.data = torch.from_numpy(weights).to(device)
while layer_index + offset >= 0:
name,prev_op = list(model.named_modules())[layer_index + offset]
# print(prev_op)
if type(prev_op) == nn.Conv2d or type(prev_op) == nn.Linear:
prev_op.weight.data = torch.from_numpy(prev_op.weight.data.cpu().numpy()[filter_index]).to(device)
if prev_op.bias is not None:
prev_op.bias.data = torch.from_numpy(prev_op.bias.data.cpu().numpy()[filter_index]).to(device)
if name.endswith('downsample.conv'):
offset-=1
continue
break
# select bn
elif type(prev_op) == nn.BatchNorm2d:
prev_op.weight.data = torch.from_numpy(prev_op.weight.data.cpu().numpy()[filter_index]).to(device)
prev_op.bias.data = torch.from_numpy(prev_op.bias.data.cpu().numpy()[filter_index]).to(device)
prev_op.running_mean.data = torch.from_numpy(prev_op.running_mean.data.cpu().numpy()[filter_index]).to(device)
prev_op.running_var.data = torch.from_numpy(prev_op.running_var.data.cpu().numpy()[filter_index]).to(device)
offset -= 1