-
-
Notifications
You must be signed in to change notification settings - Fork 2.6k
/
streamlit_interactive.py
536 lines (460 loc) · 18.3 KB
/
streamlit_interactive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
# Import necessary libraries
import json
import os
from typing import List
import networkx as nx
import nltk
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import streamlit as st
from annotated_text import annotated_text, parameters
from streamlit_extras import add_vertical_space as avs
from streamlit_extras.badges import badge
from scripts import JobDescriptionProcessor, ResumeProcessor
from scripts.parsers import ParseJobDesc, ParseResume
from scripts.ReadPdf import read_single_pdf
from scripts.similarity.get_score import *
from scripts.utils import get_filenames_from_dir
# Set page configuration
st.set_page_config(
page_title="Resume Matcher",
page_icon="Assets/img/favicon.ico",
initial_sidebar_state="auto",
layout="wide",
)
# Find the current working directory and configuration path
cwd = find_path("Resume-Matcher")
config_path = os.path.join(cwd, "scripts", "similarity")
# Check if NLTK punkt_tab data is available, if not, download it
try:
nltk.data.find("tokenizers/punkt_tab")
except LookupError:
nltk.download("punkt_tab")
# Set some visualization parameters using the annotated_text library
parameters.SHOW_LABEL_SEPARATOR = False
parameters.BORDER_RADIUS = 3
parameters.PADDING = "0.5 0.25rem"
# Function to set session state variables
def update_session_state(key, val):
st.session_state[key] = val
# Function to delete all files in a directory
def delete_from_dir(filepath: str) -> bool:
try:
for file in os.scandir(filepath):
os.remove(file.path)
return True
except OSError as error:
print(f"Exception: {error}")
return False
# Function to create a star-shaped graph visualization
def create_star_graph(nodes_and_weights, title):
"""
Create a star-shaped graph visualization.
Args:
nodes_and_weights (list): List of tuples containing nodes and their weights.
title (str): Title for the graph.
Returns:
None
"""
# Create an empty graph
graph = nx.Graph()
# Add the central node
central_node = "resume"
graph.add_node(central_node)
# Add nodes and edges with weights to the graph
for node, weight in nodes_and_weights:
graph.add_node(node)
graph.add_edge(central_node, node, weight=weight * 100)
# Get position layout for nodes
pos = nx.spring_layout(graph)
# Create edge trace
edge_x = []
edge_y = []
for edge in graph.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_trace = go.Scatter(
x=edge_x,
y=edge_y,
line=dict(width=0.5, color="#888"),
hoverinfo="none",
mode="lines",
)
# Create node trace
node_x = []
node_y = []
for node in graph.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
node_trace = go.Scatter(
x=node_x,
y=node_y,
mode="markers",
hoverinfo="text",
marker=dict(
showscale=True,
colorscale="Rainbow",
reversescale=True,
color=[],
size=10,
colorbar=dict(
thickness=15,
title="Node Connections",
xanchor="left",
titleside="right",
),
line_width=2,
),
)
# Color node points by number of connections
node_adjacencies = []
node_text = []
for node in graph.nodes():
adjacencies = list(graph.adj[node]) # Changes here
node_adjacencies.append(len(adjacencies))
node_text.append(f"{node}<br># of connections: {len(adjacencies)}")
node_trace.marker.color = node_adjacencies
node_trace.text = node_text
# Create the figure
figure = go.Figure(
data=[edge_trace, node_trace],
layout=go.Layout(
title=title,
titlefont=dict(size=16),
showlegend=False,
hovermode="closest",
margin=dict(b=20, l=5, r=5, t=40),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
),
)
# Show the figure
st.plotly_chart(figure, use_container_width=True)
# Function to create annotated text with highlighting
def create_annotated_text(
input_string: str, word_list: List[str], annotation: str, color_code: str
):
"""
Create annotated text with highlighted keywords.
Args:
input_string (str): The input text.
word_list (List[str]): List of keywords to be highlighted.
annotation (str): Annotation label for highlighted keywords.
color_code (str): Color code for highlighting.
Returns:
List: Annotated text with highlighted keywords.
"""
# Tokenize the input string
tokens = nltk.word_tokenize(input_string)
# Convert the list to a set for quick lookups
word_set = set(word_list)
# Initialize an empty list to hold the annotated text
ret_annotated_text = []
for token in tokens:
# Check if the token is in the set
if token in word_set:
# If it is, append a tuple with the token, annotation, and color code
ret_annotated_text.append((token, annotation, color_code))
else:
# If it's not, just append the token as a string
ret_annotated_text.append(token)
return ret_annotated_text
# Function to read JSON data from a file
def read_json(filename):
"""
Read JSON data from a file.
Args:
filename (str): The path to the JSON file.
Returns:
dict: The JSON data.
"""
with open(filename) as f:
data = json.load(f)
return data
# Function to tokenize a string
def tokenize_string(input_string):
"""
Tokenize a string into words.
Args:
input_string (str): The input string.
Returns:
List[str]: List of tokens.
"""
tokens = nltk.word_tokenize(input_string)
return tokens
# Cleanup processed resume / job descriptions
delete_from_dir(os.path.join(cwd, "Data", "Processed", "Resumes"))
delete_from_dir(os.path.join(cwd, "Data", "Processed", "JobDescription"))
# Set default session states for first run
if "resumeUploaded" not in st.session_state.keys():
update_session_state("resumeUploaded", "Pending")
update_session_state("resumePath", "")
if "jobDescriptionUploaded" not in st.session_state.keys():
update_session_state("jobDescriptionUploaded", "Pending")
update_session_state("jobDescriptionPath", "")
# Display the main title and sub-headers
st.title(":blue[Resume Matcher]")
with st.sidebar:
st.image("Assets/img/header_image.png")
st.subheader(
"Free and Open Source ATS to help your resume pass the screening stage."
)
st.markdown(
"Check the website [www.resumematcher.fyi](https://www.resumematcher.fyi/)"
)
st.markdown(
"Give Resume Matcher a ⭐ on [GitHub](https://github.com/srbhr/resume-matcher)"
)
badge(type="github", name="srbhr/Resume-Matcher")
st.markdown("For updates follow me on Twitter.")
badge(type="twitter", name="_srbhr_")
st.markdown(
"If you like the project and would like to further help in development please consider 👇"
)
badge(type="buymeacoffee", name="srbhr")
st.divider()
avs.add_vertical_space(1)
with st.container():
resumeCol, jobDescriptionCol = st.columns(2)
with resumeCol:
uploaded_Resume = st.file_uploader("Choose a Resume", type="pdf")
if uploaded_Resume is not None:
if st.session_state["resumeUploaded"] == "Pending":
save_path_resume = os.path.join(
cwd, "Data", "Resumes", uploaded_Resume.name
)
with open(save_path_resume, mode="wb") as w:
w.write(uploaded_Resume.getvalue())
if os.path.exists(save_path_resume):
st.toast(
f"File {uploaded_Resume.name} is successfully saved!", icon="✔️"
)
update_session_state("resumeUploaded", "Uploaded")
update_session_state("resumePath", save_path_resume)
else:
update_session_state("resumeUploaded", "Pending")
update_session_state("resumePath", "")
with jobDescriptionCol:
uploaded_JobDescription = st.file_uploader(
"Choose a Job Description", type="pdf"
)
if uploaded_JobDescription is not None:
if st.session_state["jobDescriptionUploaded"] == "Pending":
save_path_jobDescription = os.path.join(
cwd, "Data", "JobDescription", uploaded_JobDescription.name
)
with open(save_path_jobDescription, mode="wb") as w:
w.write(uploaded_JobDescription.getvalue())
if os.path.exists(save_path_jobDescription):
st.toast(
f"File {uploaded_JobDescription.name} is successfully saved!",
icon="✔️",
)
update_session_state("jobDescriptionUploaded", "Uploaded")
update_session_state("jobDescriptionPath", save_path_jobDescription)
else:
update_session_state("jobDescriptionUploaded", "Pending")
update_session_state("jobDescriptionPath", "")
with st.spinner("Please wait..."):
if (
uploaded_Resume is not None
and st.session_state["jobDescriptionUploaded"] == "Uploaded"
and uploaded_JobDescription is not None
and st.session_state["jobDescriptionUploaded"] == "Uploaded"
):
resumeProcessor = ParseResume(read_single_pdf(st.session_state["resumePath"]))
jobDescriptionProcessor = ParseJobDesc(
read_single_pdf(st.session_state["jobDescriptionPath"])
)
# Resume / JD output
selected_file = resumeProcessor.get_JSON()
selected_jd = jobDescriptionProcessor.get_JSON()
# Add containers for each row to avoid overlap
# Parsed data
with st.container():
resumeCol, jobDescriptionCol = st.columns(2)
with resumeCol:
with st.expander("Parsed Resume Data"):
st.caption(
"This text is parsed from your resume. This is how it'll look like after getting parsed by an "
"ATS."
)
st.caption(
"Utilize this to understand how to make your resume ATS friendly."
)
avs.add_vertical_space(3)
st.write(selected_file["clean_data"])
with jobDescriptionCol:
with st.expander("Parsed Job Description"):
st.caption(
"Currently in the pipeline I'm parsing this from PDF but it'll be from txt or copy paste."
)
avs.add_vertical_space(3)
st.write(selected_jd["clean_data"])
# Extracted keywords
with st.container():
resumeCol, jobDescriptionCol = st.columns(2)
with resumeCol:
with st.expander("Extracted Keywords"):
st.write(
"Now let's take a look at the extracted keywords from the resume."
)
annotated_text(
create_annotated_text(
selected_file["clean_data"],
selected_file["extracted_keywords"],
"KW",
"#0B666A",
)
)
with jobDescriptionCol:
with st.expander("Extracted Keywords"):
st.write(
"Now let's take a look at the extracted keywords from the job description."
)
annotated_text(
create_annotated_text(
selected_jd["clean_data"],
selected_jd["extracted_keywords"],
"KW",
"#0B666A",
)
)
# Star graph visualization
with st.container():
resumeCol, jobDescriptionCol = st.columns(2)
with resumeCol:
with st.expander("Extracted Entities"):
st.write(
"Now let's take a look at the extracted entities from the resume."
)
# Call the function with your data
create_star_graph(selected_file["keyterms"], "Entities from Resume")
with jobDescriptionCol:
with st.expander("Extracted Entities"):
st.write(
"Now let's take a look at the extracted entities from the job description."
)
# Call the function with your data
create_star_graph(
selected_jd["keyterms"], "Entities from Job Description"
)
# Keywords and values
with st.container():
resumeCol, jobDescriptionCol = st.columns(2)
with resumeCol:
with st.expander("Keywords & Values"):
df1 = pd.DataFrame(
selected_file["keyterms"], columns=["keyword", "value"]
)
# Create the dictionary
keyword_dict = {}
for keyword, value in selected_file["keyterms"]:
keyword_dict[keyword] = value * 100
fig = go.Figure(
data=[
go.Table(
header=dict(
values=["Keyword", "Value"],
font=dict(size=12, color="white"),
fill_color="#1d2078",
),
cells=dict(
values=[
list(keyword_dict.keys()),
list(keyword_dict.values()),
],
line_color="darkslategray",
fill_color="#6DA9E4",
),
)
]
)
st.plotly_chart(fig, use_container_width=True)
with jobDescriptionCol:
with st.expander("Keywords & Values"):
df2 = pd.DataFrame(
selected_jd["keyterms"], columns=["keyword", "value"]
)
# Create the dictionary
keyword_dict = {}
for keyword, value in selected_jd["keyterms"]:
keyword_dict[keyword] = value * 100
fig = go.Figure(
data=[
go.Table(
header=dict(
values=["Keyword", "Value"],
font=dict(size=12, color="white"),
fill_color="#1d2078",
),
cells=dict(
values=[
list(keyword_dict.keys()),
list(keyword_dict.values()),
],
line_color="darkslategray",
fill_color="#6DA9E4",
),
)
]
)
st.plotly_chart(fig, use_container_width=True)
# Treemaps
with st.container():
resumeCol, jobDescriptionCol = st.columns(2)
with resumeCol:
with st.expander("Key Topics"):
fig = px.treemap(
df1,
path=["keyword"],
values="value",
color_continuous_scale="Rainbow",
title="Key Terms/Topics Extracted from your Resume",
)
st.plotly_chart(fig, use_container_width=True)
with jobDescriptionCol:
with st.expander("Key Topics"):
fig = px.treemap(
df2,
path=["keyword"],
values="value",
color_continuous_scale="Rainbow",
title="Key Terms/Topics Extracted from Job Description",
)
st.plotly_chart(fig, use_container_width=True)
avs.add_vertical_space(2)
st.markdown("#### Similarity Score")
print("Config file parsed successfully:")
resume_string = " ".join(selected_file["extracted_keywords"])
jd_string = " ".join(selected_jd["extracted_keywords"])
result = get_score(resume_string, jd_string)
similarity_score = round(result[0].score * 100, 2)
# Default color to green
score_color = "green"
if similarity_score < 60:
score_color = "red"
elif 60 <= similarity_score < 75:
score_color = "orange"
st.markdown(
f"Similarity Score obtained for the resume and job description is "
f'<span style="color:{score_color};font-size:24px; font-weight:Bold">{similarity_score}</span>',
unsafe_allow_html=True,
)
avs.add_vertical_space(2)
with st.expander("Common words between Resume and Job Description:"):
annotated_text(
create_annotated_text(
selected_file["clean_data"],
selected_jd["extracted_keywords"],
"JD",
"#F24C3D",
)
)
st.divider()
# Go back to top
st.markdown("[:arrow_up: Back to Top](#resume-matcher)")