-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpipeline.py
executable file
·215 lines (163 loc) · 6.98 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#!/usr/bin/env python3
"""
File: pipeline.py
-----------------
This script is the interface to the TV-News video processing pipeline.
Given a video filepath or textfile containing a list of video filepaths, this
script takes the video(s) through the following stages:
- detect faces (detect_faces_and_compute_embeddings.py)
- compute face embeddings (detect_faces_and_compute_embeddings.py)
- extract face image crops (detect_faces_and_compute_embeddings.py)
- detect black frames (detect_black_frames.py)
- identify faces (identify_faces_with_aws.py)
- propagate identities to unlabeled faces (identity_propagation.py)
- classify gender (classify_gender.py)
- copy original captions (copy_captions.py)
- time align captions (caption_alignment.py)
- detect commercials (commercial_detection.py)
Sample output directory after pipeline completion:
output_dir/
├── video1
│ ├── alignment_stats.json
│ ├── bboxes.json
│ ├── black_frames.json
│ ├── embeddings.json
│ ├── genders.json
│ ├── identities.json
│ ├── identities_propagated.json
│ ├── metadata.json
│ ├── captions.srt
│ ├── captions_orig.srt
│ ├── commercials.json
│ └── crops
│ ├── 0.png
│ └── 1.png
├── video2
│ └── ...
└── ...
"""
import argparse
import multiprocessing as mp
import os
import sys
from pathlib import Path
import time
from util import config
NAMED_COMPONENTS = [
'face_component',
'black_frames',
'identities',
'identity_propagation',
'genders',
'captions_copy',
'caption_alignment',
'commercials'
]
class PipelineError(Exception):
"""Base class for Pipeline errors."""
pass
class FileTypeNotSupportedError(PipelineError):
"""For unsupported file types."""
def __init__(self, type, format, supported):
self.type = type
self.format = format
self.supported = supported
self.message = f'The {format} {type} format is not supported. ' \
f'Try one of these instead: {supported}.'
super().__init__(self.message)
def get_args():
"""Get command line arguments."""
parser = argparse.ArgumentParser()
parser.add_argument('in_path', help=('path to mp4 or to a text file '
'containing video filepaths'))
parser.add_argument('--captions', help=('path to srt or to a text file '
'containing srt filepaths'))
parser.add_argument('out_path', help='path to output directory')
parser.add_argument('-i', '--init-run', action='store_true',
help='running on videos for the first time')
parser.add_argument('-f', '--force', action='store_true',
help='force rerun for all videos')
parser.add_argument('-d', '--disable', nargs='+', choices=NAMED_COMPONENTS,
help='list of named components to disable')
parser.add_argument('-s', '--script', choices=NAMED_COMPONENTS,
help='run a single component of the pipeline as a script')
parser.add_argument('-p', '--parallel', action='store_true',
help='run two branches of components in parallel')
return parser.parse_args()
def main(in_path, captions, out_path, init_run=False, force=False,
disable=None, script=None, parallel=False):
"""
The entrypoint for the pipeline.
Args:
in_path (str): the path to the video file or batch file.
captions (str): the path to the captions file or batch captions file.
out_path (str): the path to the output directory.
init_run (bool): whether this is the first time processing the videos.
Default False.
force (bool): whether to overwrite existing outputs. Default False.
disable (Optional[List]): a list of components to disable.
Default None.
script (Optional[str]): a single component to run. Default None.
"""
start = time.time()
# Configuration settings
if disable is None:
disable = config.DISABLE if config.DISABLE else []
# Validate file formats
single = not in_path.endswith('.txt') and not os.path.isdir(in_path)
if single and not in_path.endswith('.mp4'):
raise FileTypeNotSupportedError(
'video', Path(in_path).suffix.strip('.'), ['mp4']
)
if single and captions is not None and not captions.endswith('.srt'):
raise FileTypeNotSupportedError(
'captions', Path(captions).suffix.strip('.'), ['srt']
)
n_videos = 1 if single else len([l for l in open(in_path, 'r') if l.strip()])
# Step through each pipeline component
should_run = lambda c: script and script == c or (not script and c not in disable)
if should_run('face_component'):
# Import component only when necessary, in case deps aren't installed
from components import detect_faces_and_compute_embeddings
detect_faces_and_compute_embeddings.main(
in_path, out_path, init_run, force)
# Computation that relies on the outputs of the face component
# Separated to allow for parallel branches with `-p` flag
def face_id_path():
if should_run('identities'):
from components import identify_faces_with_aws
identify_faces_with_aws.main(out_path, out_path, force=force)
if should_run('identity_propagation'):
from components import identity_propagation
identity_propagation.main(out_path, out_path, force=force)
if parallel:
proc = mp.Process(target=face_id_path)
proc.start()
else:
face_id_path()
if should_run('genders'):
from components import classify_gender
classify_gender.main(out_path, out_path, force=force)
if should_run('black_frames'):
from components import detect_black_frames
detect_black_frames.main(in_path, out_path, init_run, force)
# Captions are optional so make sure they are provided
if captions is not None:
if should_run('captions_copy'):
from components import copy_captions
copy_captions.main(captions, out_path)
if should_run('caption_alignment'):
from components import caption_alignment
caption_alignment.main(in_path, captions, out_path, force=force)
if should_run('commercials'):
from components import commercial_detection
commercial_detection.main(out_path, out_path, force=force)
if parallel:
proc.join()
if not script:
end = time.time()
print(f'{"Script" if script else "Pipeline"} completed over {n_videos} '
f'videos in {end - start:.2f} seconds.')
sys.stdout.flush()
if __name__ == '__main__':
main(**vars(get_args()))