-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdefense.py
1021 lines (852 loc) · 44.7 KB
/
defense.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import torch
from utils import *
from geometric_median import geometric_median
def vectorize_net(net):
return torch.cat([p.view(-1) for p in net.parameters()])
def load_model_weight(net, weight):
index_bias = 0
for p_index, p in enumerate(net.parameters()):
p.data = weight[index_bias:index_bias+p.numel()].view(p.size())
index_bias += p.numel()
def load_model_weight_diff(net, weight_diff, global_weight):
"""
load rule: w_t + clipped(w^{local}_t - w_t)
"""
listed_global_weight = list(global_weight.parameters())
index_bias = 0
for p_index, p in enumerate(net.parameters()):
p.data = weight_diff[index_bias:index_bias+p.numel()].view(p.size()) + listed_global_weight[p_index]
index_bias += p.numel()
def rlr_avg(vectorize_nets, vectorize_avg_net, freq, attacker_idxs, lr, n_params, device, robustLR_threshold=4):
lr_vector = torch.Tensor([lr]*n_params).to(device)
total_client = len(vectorize_nets)
local_updates = vectorize_nets - vectorize_avg_net
print(f"len freq: {len(freq)}")
print(f"local_updates.shape is: {len(local_updates)}")
fed_avg_updates_vector = np.average(local_updates, weights=freq, axis=0).astype(float32)
print(f"fed_avg_vector.shape is: {fed_avg_updates_vector.shape}")
# vectorize_nets = [vectorize_net(cm).detach().cpu().numpy() for cm in neo_net_list]
selected_net_indx = [i for i in range(total_client) if i not in attacker_idxs]
selected_freq = np.array(freq)[selected_net_indx]
selected_freq = [freq/sum(selected_freq) for freq in selected_freq]
agent_updates_sign = [np.sign(update) for update in local_updates]
sm_of_signs = np.abs(sum(agent_updates_sign))
sm_of_signs[sm_of_signs < robustLR_threshold] = -lr
sm_of_signs[sm_of_signs >= robustLR_threshold] = lr
print(f"sm_of_signs is: {sm_of_signs}")
lr_vector = sm_of_signs
poison_w_idxs = sm_of_signs < 0
# poison_w_idxs = poison_w_idxs*1
print(f"poison_w_idxs: {poison_w_idxs}")
print(f"lr_vector: {lr_vector}")
local_updates = np.asarray(local_updates)
print(f"local_updates.shape is: {local_updates.shape}")
# local_updates[attacker_idxs][poison_w_idxs] = 0
cnt = 0
sm_updates_2 = 0
# for _id, update in enumerate(local_updates):
# if _id not in attacker_idxs:
# sm_updates_2 += selected_freq[cnt]*update[poison_w_idxs]
# cnt+=1
for _id, update in enumerate(local_updates):
if _id not in attacker_idxs:
sm_updates_2 += freq[_id]*update[poison_w_idxs]
else:
sm_updates_2 += freq[_id]*(-update[poison_w_idxs])
print(f"sm_updates_2.shape is: {sm_updates_2.shape}")
fed_avg_updates_vector[poison_w_idxs] = sm_updates_2
new_global_params = (vectorize_avg_net + lr*fed_avg_updates_vector).astype(np.float32)
return new_global_params
class Defense:
def __init__(self, *args, **kwargs):
self.hyper_params = None
def exec(self, client_model, *args, **kwargs):
raise NotImplementedError()
class ClippingDefense(Defense):
"""
Deprecated, do not use this method
"""
def __init__(self, norm_bound, *args, **kwargs):
self.norm_bound = norm_bound
def exec(self, client_model, *args, **kwargs):
vectorized_net = vectorize_net(client_model)
weight_norm = torch.norm(vectorized_net).item()
clipped_weight = vectorized_net/max(1, weight_norm/self.norm_bound)
logger.info("Norm Clipped Mode {}".format(
torch.norm(clipped_weight).item()))
load_model_weight(client_model, clipped_weight)
# index_bias = 0
# for p_index, p in enumerate(client_model.parameters()):
# p.data = clipped_weight[index_bias:index_bias+p.numel()].view(p.size())
# index_bias += p.numel()
##weight_norm = torch.sqrt(sum([torch.norm(p)**2 for p in client_model.parameters()]))
#for p_index, p in enumerate(client_model.parameters()):
# p.data /= max(1, weight_norm/self.norm_bound)
return None
class RLR(Defense):
def __init__(self, n_params, device, args, agent_data_sizes=[], writer=None, robustLR_threshold = 0, aggr="avg", poisoned_val_loader=None):
self.agent_data_sizes = agent_data_sizes
self.args = args
self.writer = writer
# print(f"args: {args}")
# self.server_lr = args.server_lr
self.n_params = n_params
self.poisoned_val_loader = None
self.cum_net_mov = 0
self.device = device
self.robustLR_threshold = robustLR_threshold
def exec(self, global_model, client_models, num_dps, agent_updates_dict=None, cur_round=0):
# adjust LR if robust LR is selected
print(f"self.args: {self.args}")
print(f"self.args['server_lr']: {self.args['server_lr']}")
lr_vector = torch.Tensor([self.args['server_lr']]*self.n_params).to(self.device)
vectorize_nets = [vectorize_net(cm).detach().cpu().numpy() for cm in client_models]
vectorize_avg_net = vectorize_net(global_model).detach().cpu().numpy()
local_updates = vectorize_nets - vectorize_avg_net
aggr_freq = [num_dp/sum(num_dps) for num_dp in num_dps]
if self.robustLR_threshold > 0:
lr_vector = self.compute_robustLR(local_updates)
aggregated_updates = 0
if self.args['aggr']=='avg':
aggregated_updates = self.agg_avg(local_updates, aggr_freq)
elif self.args['aggr']=='comed':
#TODO update for the 2 remaining func
aggregated_updates = self.agg_comed(local_updates)
elif self.args['aggr'] == 'sign':
aggregated_updates = self.agg_sign(local_updates)
if self.args['noise'] > 0:
aggregated_updates.add_(torch.normal(mean=0, std=self.args['noise']*self.args['clip'], size=(self.n_params,)).to(self.device))
cur_global_params = vectorize_avg_net
new_global_params = (cur_global_params + lr_vector*aggregated_updates).astype(np.float32)
aggregated_model = client_models[0] # slicing which doesn't really matter
load_model_weight(aggregated_model, torch.from_numpy(new_global_params).to(self.device))
neo_net_list = [aggregated_model]
neo_net_freq = [1.0]
return neo_net_list, neo_net_freq
# some plotting stuff if desired
# self.plot_sign_agreement(lr_vector, cur_global_params, new_global_params, cur_round)
# self.plot_norms(agent_updates_dict, cur_round)
def compute_robustLR(self, agent_updates):
agent_updates_sign = [np.sign(update) for update in agent_updates]
sm_of_signs = np.abs(sum(agent_updates_sign))
print(f"sm_of_signs is: {sm_of_signs}")
sm_of_signs[sm_of_signs < self.robustLR_threshold] = -self.args['server_lr']
sm_of_signs[sm_of_signs >= self.robustLR_threshold] = self.args['server_lr']
return sm_of_signs
def agg_avg(self, agent_updates_dict, num_dps):
""" classic fed avg """
sm_updates, total_data = 0, 0
for _id, update in enumerate(agent_updates_dict):
n_agent_data = num_dps[_id]
sm_updates += n_agent_data * update
total_data += n_agent_data
return sm_updates / total_data
# def exec(self, global_model, client_models, num_dps, agent_updates_dict=None, cur_round=0):
# # Adjust LR if robust LR is selected
# print(f"self.args: {self.args}")
# print(f"self.args['server_lr']: {self.args['server_lr']}")
# lr_vector = torch.Tensor([self.args['server_lr']] * self.n_params).to(self.device)
# vectorize_nets = [vectorize_net(cm).detach() for cm in client_models]
# vectorize_avg_net = vectorize_net(global_model).detach()
# local_updates = [vn - vectorize_avg_net for vn in vectorize_nets]
# aggr_freq = [num_dp / sum(num_dps) for num_dp in num_dps]
# if self.robustLR_threshold > 0:
# lr_vector = self.compute_robustLR(local_updates)
# aggregated_updates = 0
# if self.args['aggr'] == 'avg':
# aggregated_updates = self.agg_avg(local_updates, num_dps)
# elif self.args['aggr'] == 'comed':
# # TODO update for the 2 remaining func
# aggregated_updates = self.agg_comed(local_updates)
# elif self.args['aggr'] == 'sign':
# aggregated_updates = self.agg_sign(local_updates)
# if self.args['noise'] > 0:
# noise = torch.normal(mean=0, std=self.args['noise'] * self.args['clip'], size=(self.n_params,)).to(self.device)
# aggregated_updates.add_(noise)
# cur_global_params = vectorize_avg_net.to(self.device)
# new_global_params = cur_global_params + lr_vector * aggregated_updates.float()
# aggregated_model = client_models[0] # Slicing which doesn't really matter
# load_model_weight(aggregated_model, new_global_params)
# neo_net_list = [aggregated_model]
# neo_net_freq = [1.0]
# return neo_net_list, neo_net_freq
# def compute_robustLR(self, agent_updates):
# agent_updates_sign = [torch.sign(update) for update in agent_updates]
# sm_of_signs = torch.abs(sum(agent_updates_sign))
# print(f"sm_of_signs is: {sm_of_signs}")
# sm_of_signs[sm_of_signs < self.robustLR_threshold] = -self.args['server_lr']
# sm_of_signs[sm_of_signs >= self.robustLR_threshold] = self.args['server_lr']
# return sm_of_signs
# def agg_avg(self, agent_updates_dict, num_dps):
# """Classic federated average"""
# sm_updates, total_data = 0, 0
# for _id, update in enumerate(agent_updates_dict):
# n_agent_data = num_dps[_id]
# sm_updates += n_agent_data * update
# total_data += n_agent_data
# return sm_updates / total_data
def agg_comed(self, agent_updates_dict):
agent_updates_col_vector = [update.view(-1, 1) for update in agent_updates_dict.values()]
concat_col_vectors = torch.cat(agent_updates_col_vector, dim=1)
return torch.median(concat_col_vectors, dim=1).values
def agg_sign(self, agent_updates_dict):
""" aggregated majority sign update """
agent_updates_sign = [torch.sign(update) for update in agent_updates_dict.values()]
sm_signs = torch.sign(sum(agent_updates_sign))
return torch.sign(sm_signs)
def clip_updates(self, agent_updates_dict):
for update in agent_updates_dict.values():
l2_update = torch.norm(update, p=2)
update.div_(max(1, l2_update/self.args['clip']))
return
def plot_norms(self, agent_updates_dict, cur_round, norm=2):
""" Plotting average norm information for honest/corrupt updates """
honest_updates, corrupt_updates = [], []
for key in agent_updates_dict.keys():
if key < self.args.num_corrupt:
corrupt_updates.append(agent_updates_dict[key])
else:
honest_updates.append(agent_updates_dict[key])
l2_honest_updates = [torch.norm(update, p=norm) for update in honest_updates]
avg_l2_honest_updates = sum(l2_honest_updates) / len(l2_honest_updates)
self.writer.add_scalar(f'Norms/Avg_Honest_L{norm}', avg_l2_honest_updates, cur_round)
if len(corrupt_updates) > 0:
l2_corrupt_updates = [torch.norm(update, p=norm) for update in corrupt_updates]
avg_l2_corrupt_updates = sum(l2_corrupt_updates) / len(l2_corrupt_updates)
self.writer.add_scalar(f'Norms/Avg_Corrupt_L{norm}', avg_l2_corrupt_updates, cur_round)
return
def comp_diag_fisher(self, model_params, data_loader, adv=True):
model = models.get_model(self.args.data)
vector_to_parameters(model_params, model.parameters())
params = {n: p for n, p in model.named_parameters() if p.requires_grad}
precision_matrices = {}
for n, p in deepcopy(params).items():
p.data.zero_()
precision_matrices[n] = p.data
model.eval()
for _, (inputs, labels) in enumerate(data_loader):
model.zero_grad()
inputs, labels = inputs.to(device=self.args.device, non_blocking=True),\
labels.to(device=self.args.device, non_blocking=True).view(-1, 1)
if not adv:
labels.fill_(self.args.base_class)
outputs = model(inputs)
log_all_probs = F.log_softmax(outputs, dim=1)
target_log_probs = outputs.gather(1, labels)
batch_target_log_probs = target_log_probs.sum()
batch_target_log_probs.backward()
for n, p in model.named_parameters():
precision_matrices[n].data += (p.grad.data ** 2) / len(data_loader.dataset)
return parameters_to_vector(precision_matrices.values()).detach()
def plot_sign_agreement(self, robustLR, cur_global_params, new_global_params, cur_round):
""" Getting sign agreement of updates between honest and corrupt agents """
# total update for this round
update = new_global_params - cur_global_params
# compute FIM to quantify these parameters: (i) parameters which induces adversarial mapping on trojaned, (ii) parameters which induces correct mapping on trojaned
fisher_adv = self.comp_diag_fisher(cur_global_params, self.poisoned_val_loader)
fisher_hon = self.comp_diag_fisher(cur_global_params, self.poisoned_val_loader, adv=False)
_, adv_idxs = fisher_adv.sort()
_, hon_idxs = fisher_hon.sort()
# get most important n_idxs params
n_idxs = self.args.top_frac #math.floor(self.n_params*self.args.top_frac)
adv_top_idxs = adv_idxs[-n_idxs:].cpu().detach().numpy()
hon_top_idxs = hon_idxs[-n_idxs:].cpu().detach().numpy()
# minimized and maximized indexes
min_idxs = (robustLR == -self.args.server_lr).nonzero().cpu().detach().numpy()
max_idxs = (robustLR == self.args.server_lr).nonzero().cpu().detach().numpy()
# get minimized and maximized idxs for adversary and honest
max_adv_idxs = np.intersect1d(adv_top_idxs, max_idxs)
max_hon_idxs = np.intersect1d(hon_top_idxs, max_idxs)
min_adv_idxs = np.intersect1d(adv_top_idxs, min_idxs)
min_hon_idxs = np.intersect1d(hon_top_idxs, min_idxs)
# get differences
max_adv_only_idxs = np.setdiff1d(max_adv_idxs, max_hon_idxs)
max_hon_only_idxs = np.setdiff1d(max_hon_idxs, max_adv_idxs)
min_adv_only_idxs = np.setdiff1d(min_adv_idxs, min_hon_idxs)
min_hon_only_idxs = np.setdiff1d(min_hon_idxs, min_adv_idxs)
# get actual update values and compute L2 norm
max_adv_only_upd = update[max_adv_only_idxs] # S1
max_hon_only_upd = update[max_hon_only_idxs] # S2
min_adv_only_upd = update[min_adv_only_idxs] # S3
min_hon_only_upd = update[min_hon_only_idxs] # S4
#log l2 of updates
max_adv_only_upd_l2 = torch.norm(max_adv_only_upd).item()
max_hon_only_upd_l2 = torch.norm(max_hon_only_upd).item()
min_adv_only_upd_l2 = torch.norm(min_adv_only_upd).item()
min_hon_only_upd_l2 = torch.norm(min_hon_only_upd).item()
self.writer.add_scalar(f'Sign/Hon_Maxim_L2', max_hon_only_upd_l2, cur_round)
self.writer.add_scalar(f'Sign/Adv_Maxim_L2', max_adv_only_upd_l2, cur_round)
self.writer.add_scalar(f'Sign/Adv_Minim_L2', min_adv_only_upd_l2, cur_round)
self.writer.add_scalar(f'Sign/Hon_Minim_L2', min_hon_only_upd_l2, cur_round)
net_adv = max_adv_only_upd_l2 - min_adv_only_upd_l2
net_hon = max_hon_only_upd_l2 - min_hon_only_upd_l2
self.writer.add_scalar(f'Sign/Adv_Net_L2', net_adv, cur_round)
self.writer.add_scalar(f'Sign/Hon_Net_L2', net_hon, cur_round)
self.cum_net_mov += (net_hon - net_adv)
self.writer.add_scalar(f'Sign/Model_Net_L2_Cumulative', self.cum_net_mov, cur_round)
return
class WeightDiffClippingDefense(Defense):
def __init__(self, norm_bound, *args, **kwargs):
self.norm_bound = norm_bound
def exec(self, client_model, global_model, *args, **kwargs):
"""
global_model: the global model at iteration T, bcast from the PS
client_model: starting from `global_model`, the model on the clients after local retraining
"""
vectorized_client_net = vectorize_net(client_model)
vectorized_global_net = vectorize_net(global_model)
vectorize_diff = vectorized_client_net - vectorized_global_net
weight_diff_norm = torch.norm(vectorize_diff).item()
clipped_weight_diff = vectorize_diff/max(1, weight_diff_norm/self.norm_bound)
logger.info("Norm Weight Diff: {}, Norm Clipped Weight Diff {}".format(weight_diff_norm,
torch.norm(clipped_weight_diff).item()))
load_model_weight_diff(client_model, clipped_weight_diff, global_model)
return None
class WeakDPDefense(Defense):
"""
deprecated: don't use!
according to literature, DPDefense should be applied
to the aggregated model, not invidual models
"""
def __init__(self, norm_bound, *args, **kwargs):
self.norm_bound = norm_bound
def exec(self, client_model, device, *args, **kwargs):
self.device = device
vectorized_net = vectorize_net(client_model)
weight_norm = torch.norm(vectorized_net).item()
clipped_weight = vectorized_net/max(1, weight_norm/self.norm_bound)
dp_weight = clipped_weight + torch.randn(
vectorized_net.size(),device=self.device) * self.stddev
load_model_weight(client_model, clipped_weight)
return None
class AddNoise(Defense):
def __init__(self, stddev, *args, **kwargs):
self.stddev = stddev
def exec(self, client_model, device, *args, **kwargs):
self.device = device
vectorized_net = vectorize_net(client_model)
gaussian_noise = torch.randn(vectorized_net.size(),
device=self.device) * self.stddev
dp_weight = vectorized_net + gaussian_noise
load_model_weight(client_model, dp_weight)
logger.info("Weak DP Defense: added noise of norm: {}".format(torch.norm(gaussian_noise)))
return None
class Krum(Defense):
"""
we implement the robust aggregator at: https://papers.nips.cc/paper/6617-machine-learning-with-adversaries-byzantine-tolerant-gradient-descent.pdf
and we integrate both krum and multi-krum in this single class
"""
def __init__(self, mode, num_workers, num_adv, *args, **kwargs):
assert (mode in ("krum", "multi-krum"))
self._mode = mode
self.num_workers = num_workers
self.s = num_adv
def exec(self, client_models, num_dps, g_user_indices, device, *args, **kwargs):
# # print("Start performing krum")
# vectorize_nets = [vectorize_net(cm).detach().cpu().numpy() for cm in client_models]
# neighbor_distances = []
# for i, g_i in enumerate(vectorize_nets):
# distance = []
# for j in range(i+1, len(vectorize_nets)):
# if i != j:
# g_j = vectorize_nets[j]
# distance.append(float(np.linalg.norm(g_i-g_j)**2)) # let's change this to pytorch version
# neighbor_distances.append(distance)
vectorize_nets = [vectorize_net(cm).detach() for cm in client_models]
neighbor_distances = []
for i, g_i in enumerate(vectorize_nets):
distance = []
for j in range(i+1, len(vectorize_nets)):
if i != j:
g_j = vectorize_nets[j]
distance.append(torch.norm(g_i - g_j).pow(2).item())
neighbor_distances.append(distance)
# # compute scores
# nb_in_score = self.num_workers-self.s-2
# scores = []
# for i, g_i in enumerate(vectorize_nets):
# dists = []
# for j, g_j in enumerate(vectorize_nets):
# if j == i:
# continue
# if j < i:
# dists.append(neighbor_distances[j][i - j - 1])
# else:
# dists.append(neighbor_distances[i][j - i - 1])
# # alternative to topk in pytorch and tensorflow
# topk_ind = np.argpartition(dists, nb_in_score)[:nb_in_score]
# scores.append(sum(np.take(dists, topk_ind)))
# compute scores
nb_in_score = self.num_workers - self.s - 2
scores = []
for i, g_i in enumerate(vectorize_nets):
dists = []
for j, g_j in enumerate(vectorize_nets):
if j == i:
continue
if j < i:
dists.append(neighbor_distances[j][i - j - 1])
else:
dists.append(neighbor_distances[i][j - i - 1])
# alternative to topk in PyTorch
dists_tensor = torch.tensor(dists)
topk_values, _ = torch.topk(dists_tensor, nb_in_score)
scores.append(torch.sum(topk_values).item())
# if self._mode == "krum":
# i_star = scores.index(min(scores))
# logger.info("@@@@ The chosen one is user: {}, which is global user: {}".format(scores.index(min(scores)), g_user_indices[scores.index(min(scores))]))
# aggregated_model = client_models[0] # slicing which doesn't really matter
# load_model_weight(aggregated_model, torch.from_numpy(vectorize_nets[i_star]).to(device))
# neo_net_list = [aggregated_model]
# logger.info("Norm of Aggregated Model: {}".format(torch.norm(torch.nn.utils.parameters_to_vector(aggregated_model.parameters())).item()))
# neo_net_freq = [1.0]
# return neo_net_list, neo_net_freq
if self._mode == "krum":
i_star = scores.index(min(scores))
logger.info("@@@@ The chosen one is user: {}, which is global user: {}".format(scores.index(min(scores)), g_user_indices[scores.index(min(scores))]))
aggregated_model = client_models[0] # create a clone of the model
aggregated_model.load_state_dict(vectorize_nets[i_star].to(device))
neo_net_list = [aggregated_model]
logger.info("Norm of Aggregated Model: {}".format(torch.norm(torch.nn.utils.parameters_to_vector(aggregated_model.parameters())).item()))
neo_net_freq = [1.0]
return neo_net_list, neo_net_freq
# elif self._mode == "multi-krum":
# topk_ind = np.argpartition(scores, nb_in_score+2)[:nb_in_score+2]
# # we reconstruct the weighted averaging here:
# selected_num_dps = np.array(num_dps)[topk_ind]
# reconstructed_freq = [snd/sum(selected_num_dps) for snd in selected_num_dps]
# logger.info("Num data points: {}".format(num_dps))
# logger.info("Num selected data points: {}".format(selected_num_dps))
# logger.info("The chosen ones are users: {}, which are global users: {}".format(topk_ind, [g_user_indices[ti] for ti in topk_ind]))
# #aggregated_grad = np.mean(np.array(vectorize_nets)[topk_ind, :], axis=0)
# aggregated_grad = np.average(np.array(vectorize_nets)[topk_ind, :], weights=reconstructed_freq, axis=0).astype(np.float32)
# aggregated_model = client_models[0] # slicing which doesn't really matter
# load_model_weight(aggregated_model, torch.from_numpy(aggregated_grad).to(device))
# neo_net_list = [aggregated_model]
# #logger.info("Norm of Aggregated Model: {}".format(torch.norm(torch.nn.utils.parameters_to_vector(aggregated_model.parameters())).item()))
# neo_net_freq = [1.0]
# return neo_net_list, neo_net_freq
elif self._mode == "multi-krum":
topk_ind = np.argpartition(scores, nb_in_score+2)[:nb_in_score+2]
# We reconstruct the weighted averaging here:
selected_num_dps = np.array(num_dps)[topk_ind]
reconstructed_freq = torch.tensor([snd/sum(selected_num_dps) for snd in selected_num_dps], dtype=torch.float32, device=device)
logger.info("Num data points: {}".format(num_dps))
logger.info("Num selected data points: {}".format(selected_num_dps))
logger.info("The chosen ones are users: {}, which are global users: {}".format(topk_ind, [g_user_indices[ti] for ti in topk_ind]))
aggregated_grad = torch.sum(torch.stack([reconstructed_freq[i] * vectorize_nets[j] for i, j in enumerate(topk_ind)], dim=0), dim=0) # Weighted sum of the gradients
aggregated_model = client_models[0] # create a clone of the model
load_model_weight(aggregated_model, aggregated_grad)
neo_net_list = [aggregated_model]
neo_net_freq = [1.0]
return neo_net_list, neo_net_freq
class CRFL(Defense):
"""
we implement the robust aggregator of CRFL
"""
TYPE_LOAN='loan'
TYPE_MNIST='mnist'
TYPE_EMNIST='emnist'
TYPE_CIFAR10 = 'cifar10'
TYPE_TINY_IMAGENET = 'tiny-imagenet'
def __init__(self, *args, **kwargs):
pass
# def clip_weight_norm(self, model, thres):
# current_norm = 0
# for p in model.parameters():
# param_norm = p.data.norm(2)
# current_norm += param_norm.item() ** 2
# p.data = p.data * thres / max(param_norm, thres)
# current_norm = current_norm ** (1. / 2)
# return current_norm
def model_global_norm(self, model):
squared_sum = 0
for name, layer in model.named_parameters():
squared_sum += torch.sum(torch.pow(layer.data, 2))
return math.sqrt(squared_sum)
def clip_weight_norm(self, model, clip):
total_norm = self.model_global_norm(model)
print("total_norm: " + str(total_norm)+ "clip_norm: "+str(clip ))
max_norm = clip
clip_coef = max_norm / (total_norm + 1e-6)
current_norm = total_norm
if total_norm > max_norm:
for name, layer in model.named_parameters():
layer.data.mul_(clip_coef)
current_norm = self.model_global_norm(model)
print("clip~~~ norm after clipping: "+ str(current_norm) )
return current_norm
def dp_noise(self, param, sigma):
noised_layer = torch.cuda.FloatTensor(param.shape).normal_(mean=0, std=sigma)
return noised_layer
def exec(self, target_model, epoch, sigma_param, dataset_name, device):
# target_model: global model
# clip the global model
param_clip_thres = 0
# sigma_param = 0.01
if dataset_name == CRFL.TYPE_MNIST:
dynamic_thres= epoch *0.1+2
param_clip_thres = 15
elif dataset_name == CRFL.TYPE_LOAN:
dynamic_thres = epoch*0.025+2
param_clip_thres = 5
elif dataset_name == CRFL.TYPE_EMNIST:
dynamic_thres= epoch*0.25+4
param_clip_thres = 100
# tuannm threshold by tuannm day 11.02.2023
elif dataset_name == CRFL.TYPE_CIFAR10:
dynamic_thres= epoch*0.25+4
param_clip_thres = 100
elif dataset_name == CRFL.TYPE_TINY_IMAGENET:
dynamic_thres= epoch*0.25+4
param_clip_thres = 100
if dynamic_thres < param_clip_thres:
param_clip_thres= dynamic_thres
current_norm = self.clip_weight_norm(target_model, param_clip_thres)
print(f" epoch: {epoch} clip the global model current_norm: {current_norm} !")
# add noise
print(f" epoch: {epoch} add noise on the global model!")
for name, param in target_model.state_dict().items():
param.add_(self.dp_noise(param, sigma_param))
return [target_model], [1.0]
# class RFA(Defense):
# """
# we implement the robust aggregator at:
# https://arxiv.org/pdf/1912.13445.pdf
# the code is translated from the TensorFlow implementation:
# https://github.com/krishnap25/RFA/blob/01ec26e65f13f46caf1391082aa76efcdb69a7a8/models/model.py#L264-L298
# """
# def __init__(self, *args, **kwargs):
# pass
# def exec(self, client_models, net_freq,
# maxiter=4, eps=1e-5,
# ftol=1e-6, device=torch.device("cuda"),
# *args, **kwargs):
# """Computes geometric median of atoms with weights alphas using Weiszfeld's Algorithm
# """
# # so alphas will be the same as the net freq in our code
# alphas = np.asarray(net_freq, dtype=np.float32)
# vectorize_nets = [vectorize_net(cm).detach().cpu().numpy() for cm in client_models]
# median = self.weighted_average_oracle(vectorize_nets, alphas)
# num_oracle_calls = 1
# # logging
# obj_val = self.geometric_median_objective(median=median, points=vectorize_nets, alphas=alphas)
# logs = []
# log_entry = [0, obj_val, 0, 0]
# logs.append("Tracking log entry: {}".format(log_entry))
# logger.info('Starting Weiszfeld algorithm')
# logger.info(log_entry)
# # start
# for i in range(maxiter):
# prev_median, prev_obj_val = median, obj_val
# weights = np.asarray([alpha / max(eps, self.l2dist(median, p)) for alpha, p in zip(alphas, vectorize_nets)],
# dtype=alphas.dtype)
# weights = weights / weights.sum()
# median = self.weighted_average_oracle(vectorize_nets, weights)
# num_oracle_calls += 1
# obj_val = self.geometric_median_objective(median, vectorize_nets, alphas)
# log_entry = [i+1, obj_val,
# (prev_obj_val - obj_val)/obj_val,
# self.l2dist(median, prev_median)]
# logs.append(log_entry)
# logs.append("Tracking log entry: {}".format(log_entry))
# logger.info("#### Oracle Cals: {}, Objective Val: {}".format(num_oracle_calls, obj_val))
# if abs(prev_obj_val - obj_val) < ftol * obj_val:
# break
# #logger.info("Num Oracale Calls: {}, Logs: {}".format(num_oracle_calls, logs))
# aggregated_model = client_models[0] # slicing which doesn't really matter
# load_model_weight(aggregated_model, torch.from_numpy(median.astype(np.float32)).to(device))
# neo_net_list = [aggregated_model]
# neo_net_freq = [1.0]
# return neo_net_list, neo_net_freq
# def weighted_average_oracle(self, points, weights):
# """Computes weighted average of atoms with specified weights
# Args:
# points: list, whose weighted average we wish to calculate
# Each element is a list_of_np.ndarray
# weights: list of weights of the same length as atoms
# """
# ### original implementation in TFF
# #tot_weights = np.sum(weights)
# #weighted_updates = [np.zeros_like(v) for v in points[0]]
# #for w, p in zip(weights, points):
# # for j, weighted_val in enumerate(weighted_updates):
# # weighted_val += (w / tot_weights) * p[j]
# #return weighted_updates
# ####
# tot_weights = np.sum(weights)
# weighted_updates = np.zeros(points[0].shape)
# for w, p in zip(weights, points):
# weighted_updates += (w * p / tot_weights)
# return weighted_updates
# def l2dist(self, p1, p2):
# """L2 distance between p1, p2, each of which is a list of nd-arrays"""
# # this is a helper function
# return np.linalg.norm(p1 - p2)
# def geometric_median_objective(self, median, points, alphas):
# """Compute geometric median objective."""
# return sum([alpha * self.l2dist(median, p) for alpha, p in zip(alphas, points)])
class RFA(Defense):
"""
we implement the robust aggregator at:
https://arxiv.org/pdf/1912.13445.pdf
the code is translated from the TensorFlow implementation:
https://github.com/krishnap25/RFA/blob/01ec26e65f13f46caf1391082aa76efcdb69a7a8/models/model.py#L264-L298
"""
def __init__(self, *args, **kwargs):
pass
def exec(self, client_models, net_freq,
maxiter=4, eps=1e-5,
ftol=1e-6, device=torch.device("cuda"),
*args, **kwargs):
"""Computes geometric median of atoms with weights alphas using Weiszfeld's Algorithm
"""
alphas = torch.tensor(net_freq, dtype=torch.float32, device=device)
vectorize_nets = [vectorize_net(cm).detach() for cm in client_models]
median = self.weighted_average_oracle(vectorize_nets, alphas)
num_oracle_calls = 1
# logging
obj_val = self.geometric_median_objective(median=median, points=vectorize_nets, alphas=alphas)
logs = []
log_entry = [0, obj_val, 0, 0]
logs.append("Tracking log entry: {}".format(log_entry))
logger.info('Starting Weiszfeld algorithm')
logger.info(log_entry)
# start
for i in range(maxiter):
prev_median, prev_obj_val = median, obj_val
weights = torch.tensor([alpha / max(eps, self.l2dist(median, p)) for alpha, p in zip(alphas, vectorize_nets)],
dtype=alphas.dtype, device=device)
weights = weights / weights.sum()
median = self.weighted_average_oracle(vectorize_nets, weights)
num_oracle_calls += 1
obj_val = self.geometric_median_objective(median, vectorize_nets, alphas)
log_entry = [i+1, obj_val,
(prev_obj_val - obj_val)/obj_val,
self.l2dist(median, prev_median)]
logs.append(log_entry)
logs.append("Tracking log entry: {}".format(log_entry))
logger.info("#### Oracle Cals: {}, Objective Val: {}".format(num_oracle_calls, obj_val))
if abs(prev_obj_val - obj_val) < ftol * obj_val:
break
#logger.info("Num Oracale Calls: {}, Logs: {}".format(num_oracle_calls, logs))
aggregated_model = client_models[0] # create a clone of the model
load_model_weight(aggregated_model, median.to(device))
neo_net_list = [aggregated_model]
neo_net_freq = [1.0]
return neo_net_list, neo_net_freq
def weighted_average_oracle(self, points, weights):
"""Computes weighted average of atoms with specified weights
Args:
points: list, whose weighted average we wish to calculate
Each element is a list_of_torch.Tensor
weights: list of weights of the same length as atoms
"""
tot_weights = weights.sum()
weighted_updates = torch.zeros(points[0].shape, dtype=points[0].dtype, device=points[0].device)
for w, p in zip(weights, points):
weighted_updates += (w * p / tot_weights)
return weighted_updates
def l2dist(self, p1, p2):
"""L2 distance between p1, p2, each of which is a list of nd-arrays"""
return torch.norm(p1 - p2)
def geometric_median_objective(self, median, points, alphas):
"""Compute geometric median objective."""
return torch.sum(torch.stack([alpha * self.l2dist(median, p) for alpha, p in zip(alphas, points)]))
class GeoMedian(Defense):
"""
we implement the robust aggregator of Geometric Median (GM)
"""
def __init__(self, *args, **kwargs):
pass
def exec(self, client_models, net_freq,
maxiter=4, eps=1e-5,
ftol=1e-6, device=torch.device("cuda"),
*args, **kwargs):
"""Computes geometric median of atoms with weights alphas using Weiszfeld's Algorithm
"""
# so alphas will be the same as the net freq in our code
alphas = np.asarray(net_freq, dtype=np.float32)
vectorize_nets = np.array([vectorize_net(cm).detach().cpu().numpy() for cm in client_models]).astype(np.float32)
median = geometric_median(vectorize_nets)
aggregated_model = client_models[0] # slicing which doesn't really matter
load_model_weight(aggregated_model, torch.from_numpy(median.astype(np.float32)).to(device))
neo_net_list = [aggregated_model]
neo_net_freq = [1.0]
return neo_net_list, neo_net_freq
class FoolsGold(Defense):
def __init__(self, num_clients, num_features, num_classes, *args, **kwargs):
super().__init__(*args, **kwargs)
self.n_clients = num_clients
self.n_features = num_features
self.n_classes = num_classes
def get_cos_similarity(self, full_deltas):
'''
Returns the pairwise cosine similarity of client gradients
'''
if True in np.isnan(full_deltas):
pdb.set_trace()
return smp.cosine_similarity(full_deltas)
def importanceFeatureMapGlobal(self, model):
# aggregate = np.abs(np.sum( np.reshape(model, (10, 784)), axis=0))
# aggregate = aggregate / np.linalg.norm(aggregate)
# return np.repeat(aggregate, 10)
return np.abs(model) / np.sum(np.abs(model))
def importanceFeatureMapLocal(self, model, topk_prop=0.5):
# model: np arr
d = self.n_features # dim of flatten weight
class_d = int(d / self.n_classes)
M = model.copy()
M = np.reshape(M, (self.n_classes, class_d))
# #Take abs?
# M = np.abs(M)
for i in range(self.n_classes):
if (M[i].sum() == 0):
pdb.set_trace()
M[i] = np.abs(M[i] - M[i].mean())
M[i] = M[i] / M[i].sum()
# Top k of 784
topk = int(class_d * topk_prop)
sig_features_idx = np.argpartition(M[i], -topk)[0:-topk]
M[i][sig_features_idx] = 0
return M.flatten()
def importanceFeatureHard(self, model, topk_prop=0.5):
class_d = int(self.n_features / self.n_classes)
M = np.reshape(model, (self.n_classes, class_d))
importantFeatures = np.ones((self.n_classes, class_d))
# Top k of 784
topk = int(class_d * topk_prop)
for i in range(self.n_classes):
sig_features_idx = np.argpartition(M[i], -topk)[0:-topk]
importantFeatures[i][sig_features_idx] = 0
return importantFeatures.flatten()
def get_krum_scores(self, X, groupsize):
krum_scores = np.zeros(len(X))
# Calculate distances
distances = np.sum(X**2, axis=1)[:, None] + np.sum(
X**2, axis=1)[None] - 2 * np.dot(X, X.T)
for i in range(len(X)):
krum_scores[i] = np.sum(np.sort(distances[i])[1:(groupsize - 1)])
return krum_scores
def foolsgold(self, this_delta, summed_deltas, sig_features_idx, iter, model, topk_prop=0, importance=False, importanceHard=False, clip=0):
epsilon = 1e-5
# Take all the features of sig_features_idx for each clients
sd = summed_deltas.copy()
sig_filtered_deltas = np.take(sd, sig_features_idx, axis=1)
if importance or importanceHard:
if importance:
# smooth version of importance features
importantFeatures = self.importanceFeatureMapLocal(model, topk_prop)
if importanceHard:
# hard version of important features
importantFeatures = self.importanceFeatureHard(model, topk_prop)
for i in range(self.n_clients):
sig_filtered_deltas[i] = np.multiply(sig_filtered_deltas[i], importantFeatures)
N, _ = sig_filtered_deltas.shape
cs = np.zeros((N,N))
for i in range(N):
for j in range(N):
if i == j:
cs[i,i] = 1
continue
if cs[i,j] != 0 and cs[j,i] != 0:
continue
dot_i = sig_filtered_deltas[i][np.newaxis, :] @ sig_filtered_deltas[j][:, np.newaxis]
norm_mul = np.linalg.norm(sig_filtered_deltas[i]) * np.linalg.norm(sig_filtered_deltas[j])
cs[i, j] = cs[j, i] = dot_i / norm_mul
cs = cs - np.eye(N)
# Pardoning: reweight by the max value seen
maxcs = np.max(cs, axis=1) + epsilon
for i in range(self.n_clients):
for j in range(self.n_clients):
if i == j:
continue
if maxcs[i] < maxcs[j]:
cs[i][j] = cs[i][j] * maxcs[i] / maxcs[j]
wv = 1 - (np.max(cs, axis=1))
wv[wv > 1] = 1
wv[wv < 0] = 0
# Rescale so that max value is wv
wv = wv / np.max(wv)
wv[(wv == 1)] = .99
# Logit function
wv = (np.log((wv / (1 - wv)) + epsilon) + 0.5)
wv[(np.isinf(wv) + wv > 1)] = 1
wv[(wv < 0)] = 0
if clip != 0:
# Augment onto krum
scores = self.get_krum_scores(this_delta, self.n_clients - clip)
bad_idx = np.argpartition(scores, self.n_clients - clip)[(self.n_clients - clip):self.n_clients]
# Filter out the highest krum scores
wv[bad_idx] = 0
print(f"wv: {wv}")
wv = wv/sum(wv)
avg_updates = np.average(this_delta, axis=0, weights=wv)
return avg_updates, wv
def exec(self, client_models, delta, summed_deltas, net_avg, r, device, *args, **kwargs):
'''
Aggregates history of gradient directions
'''
print(f"START Aggregating history of gradient directions")
# total_client = len(client_models)
# vectorize_nets = [vectorize_net(cm).detach().cpu().numpy() for cm in client_models]
vectorize_avg_net = vectorize_net(net_avg).detach().cpu().numpy()
flatten_net_avg = vectorize_net(net_avg).detach().cpu().numpy()
# Significant features filter, the top k biggest weights
topk = int(self.n_features / 2)
sig_features_idx = np.argpartition(flatten_net_avg, -topk)[-topk:]
sig_features_idx = np.arange(self.n_features)
avg_delta, wv = self.foolsgold(delta, summed_deltas, sig_features_idx, r, vectorize_avg_net, clip = 0)
return wv
if __name__ == "__main__":
# some tests here
import copy
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout2d(0.25)
self.dropout2 = nn.Dropout2d(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = F.relu(x)
x = self.conv2(x)
x = F.relu(x)
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = F.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = F.log_softmax(x, dim=1)
return output
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# check 1, this should recover the global model
sim_global_model = Net().to(device)
sim_local_model1 = copy.deepcopy(sim_global_model)
#sim_local_model = Net().to(device)
defender = WeightDiffClippingDefense(norm_bound=5)
defender.exec(client_model=sim_local_model1, global_model=sim_global_model)