-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodel.py
120 lines (104 loc) · 5.29 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import torch
import torch.nn as nn
import torch.nn.functional as f
import numpy as np
from typing import List
def hidden_init(layer):
""" see https://arxiv.org/abs/1509.02971 Section 7 for details:
(CONTINUOUS CONTROL WITH DEEP REINFORCEMENT LEARNING)
"""
fan_in = layer.weight.data.size()[0]
lim = 1. / np.sqrt(fan_in)
return -lim, lim
class Actor(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size: int, action_size: int, hidden_layer_sizes: List[int], activation_func=f.relu):
"""Initialize parameters and build model.
:param state_size: Dimension of each state
:param action_size: Dimension of each action
:param hidden_layer_sizes: Number of nodes in hidden layers
:param activation_func: Activation function
"""
super(Actor, self).__init__()
self.action_size = action_size
self.input_norm = nn.BatchNorm1d(state_size)
self.activation_func = activation_func
self.input_layer = nn.Linear(state_size, hidden_layer_sizes[0])
self.hidden_layers = nn.ModuleList()
self.hidden_input_norms = nn.ModuleList()
for i in range(len(hidden_layer_sizes) - 1):
hidden_layer = nn.Linear(hidden_layer_sizes[i], hidden_layer_sizes[i + 1])
self.hidden_layers.append(hidden_layer)
self.hidden_input_norms.append(nn.BatchNorm1d(hidden_layer_sizes[i]))
self.hidden_input_norms.append(nn.BatchNorm1d(hidden_layer_sizes[-1]))
self.output_layer = nn.Linear(hidden_layer_sizes[-1], action_size)
self.reset_parameters()
def reset_parameters(self):
self.input_layer.weight.data.uniform_(*hidden_init(self.input_layer))
for hidden_layer in self.hidden_layers:
hidden_layer.weight.data.uniform_(*hidden_init(hidden_layer))
self.output_layer.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state: torch.Tensor):
"""Build an actor (policy) network that maps states -> actions.
Note: Do not call this function directly. Instead, use: actor(state)
"""
x = self.input_norm(state)
x = self.activation_func(self.input_layer(x))
for i, hidden_layer in enumerate(self.hidden_layers):
x = self.hidden_input_norms[i](x)
x = self.activation_func(hidden_layer(x))
x = self.hidden_input_norms[-1](x)
# this outputs action values in the range -1 to 1 :
return torch.tanh(self.output_layer(x))
def __call__(self, state: torch.Tensor) -> torch.Tensor:
return super().__call__(state)
class Critic(nn.Module):
"""Critic (Value) Model."""
def __init__(self, state_size, action_size, hidden_layer_sizes: List[int], activation_func=f.relu, inject_layer=0):
"""Initialize parameters and build model.
:param state_size: Dimension of each state
:param action_size: Dimension of each action
:param hidden_layer_sizes: Number of nodes in hidden layers
:param activation_func: Activation function
:param inject_layer: The number of the hidden layer to inject action values into
"""
super(Critic, self).__init__()
if inject_layer < 0 or inject_layer >= len(hidden_layer_sizes) - 1:
raise ValueError()
self.inject_layer = inject_layer
self.input_norm = nn.BatchNorm1d(state_size)
self.activation_func = activation_func
self.input_layer = nn.Linear(state_size, hidden_layer_sizes[0])
self.hidden_layers = nn.ModuleList()
self.hidden_input_norms = nn.ModuleList()
for i in range(len(hidden_layer_sizes) - 1):
in_features = hidden_layer_sizes[i]
# insert the action parameters in hidden layer:
if i == inject_layer:
in_features += action_size
hidden_layer = nn.Linear(in_features, hidden_layer_sizes[i + 1])
self.hidden_layers.append(hidden_layer)
self.hidden_input_norms.append(nn.BatchNorm1d(hidden_layer_sizes[i]))
# There's only one Q-value as output, because the input is a state-action pair now (compared to DQN):
self.output_layer = nn.Linear(hidden_layer_sizes[-1], 1)
self.reset_parameters()
def reset_parameters(self):
self.input_layer.weight.data.uniform_(*hidden_init(self.input_layer))
for hidden_layer in self.hidden_layers:
hidden_layer.weight.data.uniform_(*hidden_init(hidden_layer))
self.output_layer.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state, action):
"""Build a critic (value) network that maps (state, action) pairs -> Q-values.
Note: Do not call this function directly. Instead, use: critic(state, action)
"""
x = self.input_norm(state)
x = self.activation_func(self.input_layer(x))
for i, hidden_layer in enumerate(self.hidden_layers):
x = self.hidden_input_norms[i](x)
# insert the action parameters in hidden layer:
if i == self.inject_layer:
x = torch.cat((x, action), dim=1)
x = self.activation_func(hidden_layer(x))
return self.output_layer(x)
def __call__(self, state: torch.Tensor, action: torch.Tensor) -> torch.Tensor:
return super().__call__(state, action)